Skip to main content
Log in

Assessing the Efficiency of the Ability to Intentionally Variate the Power of β2 Frequencies in the Frontal Lobes of the Cerebral Cortex

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

We performed longitudinal examinations by neurofeedback in 17 subjects. The subjects were trained for 12 training seßsions (three weeks) to voluntarily increase the intensity of the ß2 frequencies in the frontal EEG electrodes of the right (the D scenario) and the left (the S scenario) hemispheres. All the subjects were divided into three groups depending on the training efficacy: a group of subjects that successfully controlled the ß activity in the frontal electrodes of both hemispheres (nine subjects), a group of subjects that successfully controlled this activity only in the right hemisphere (four subjects), and a group of subjects that failed to train during the specified period (four subjects). Analysis of the obtained data showed that the training efficacy depended on the cognitive activity that was focused on achieving the corresponding EEG effects and on the individual personality characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Keizer, A.W., Verment, R.S., and Hommel, B., Enhancing cognitive control through neurofeedback: a role of gamma-band activity in managing episodic retrieval, NeuroImage, 2010, vol. 49, p. 3404.

    Article  PubMed  Google Scholar 

  2. Frederick, J.A., Psychophysics of EEG alpha state discrimination, Conscious. Cognit., 2012, vol. 21, no. 3, p. 1345.

    Article  Google Scholar 

  3. Reiner, M., Rozengurt, R., and Barnea, A., Better than sleep: theta neurofeedback training accelerates memory consolidation, Biol. Psychol., 2014, vol. 95, p. 45.

    Article  PubMed  Google Scholar 

  4. Gruzelier, J.H., Differential effects on mood of 12–15 (SMR) and 15–18 (beta1) Hz neurofeedback, Int. J. Psychophysiol., 2014, vol. 93, no. 1, p. 112.

    Article  PubMed  Google Scholar 

  5. Birbaumer, N., Kubler, A., Ghanayim, N., et al., The thought translation device (TTD) for completely paralyzed patients, IEEE Trans. Rehabil. Eng., 2000, vol. 8, p. 190.

    Article  PubMed  CAS  Google Scholar 

  6. Yoon, J.W, Roberts, S.J., Dyson, M., and Gan, J.Q., Adaptive classification for Brain Computer Interface systems using Sequential Monte Carlo sampling, Neural Networks, 2009, vol. 22, no. 9, p. 1286.

    Article  PubMed  Google Scholar 

  7. Kozhevnikov, S.P. and Pronichev, I.V., EEG power spectra in simulation of disruptiveness, Hum. Physiol., 2012, vol. 38, no. 5, p. 487.

    Article  Google Scholar 

  8. Kaplan, A.Ya., Neurotherapy: from BFB-training to unconscious bioregulation in the brain-computer interface, Materialy vserossiiskoi nauchno-prakticheskoi konferentsii “Klinicheskaya EEG i neiroterapiya” (Proc. All- Russ. Sci.-Pract. Conf. “Clinical EEG and Neurotherapy”), St. Petersburg, 2007, p. 130.

    Google Scholar 

  9. Gorev, A.S. and Panova, E.N., Efficiency of biofeedback training of functional state regulation depending on individual psychophysiological characteristics, Hum. Physiol., 2009, vol. 35, no. 5, p. 543.

    Article  Google Scholar 

  10. Fedotchev, A.I., Efficacy of EEG biofeedback procedures in correcting stress-related functional disorders, Hum. Physiol., 2010, vol. 36, no. 1, p. 86.

    Article  Google Scholar 

  11. Hwang, G., Jacobs, J., Geller, A., et al., EEG correlates of verbal and nonverbal working memory, Behav. Brain Funct., 2005, vol. 1, no. 1, p. 20.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lopes da Silva, F., Neural mechanisms underlying brain waves: from neural membranes to networks, Electroencephalogr. Clin. Neurophysiol., 1991, vol. 79, p. 81.

    Article  Google Scholar 

  13. Volf, N.V. and Tarasova, I.V., The relationships between EEG θ and ß oscillations and the level of creativity, Hum. Physiol., 2010, vol. 36, no. 2, p. 132.

    Article  Google Scholar 

  14. Volf, N.V., Razumnikova, O.M., and Tarasova, I.V., EEG-mapping study of sex differences during verbal creative thinking, in Focus on Brain Research, Resch, C.J., Ed., New York: Nova Science, 2007, p. 123.

    Google Scholar 

  15. Fockert, J.W., Rees, G., Frith, C.D., and Yavie, N., The role of working memory in visual selective attention, Science, 2001, vol. 291, p. 1803.

    Article  PubMed  Google Scholar 

  16. Blumenfeld, R.S. and Ranganath, C., Dorsolateral prefrontal cortex promotes long-term memory formation through its role in working memory organization, J. Neurosci., 2006, vol. 26, no. 3, p. 916.

    Article  PubMed  CAS  Google Scholar 

  17. Danilova, N.N., Psikhofiziologiya: uchebnik dlya vuzov (Psychophysiology: Manual for Higher Education Institutions), Moscow: Aspekt Press, 2001.

    Google Scholar 

  18. Klassina, S.Ya., A set of rehabilitation measures for compensating emotional stress, Hum. Physiol., 2007, vol. 33, no. 5, p. 559.

    Article  Google Scholar 

  19. Sehatpour, P., Dias, E.S., Butler, P.D., et al., Impaired visual object processing across an occipital-frontal-hippocampal brain network in schizophrenia, Arch. Gen. Psychiatry, 2010, vol. 67, no. 8, p. 772.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Danko, S.G., Gratcheva, L.V., Boytsova, J.A., and Solovjeva, M.L., Electromyogram of pericranial muscles in frequency bands ß and γ comparing various cognitive and emotional states, Hum. Physiol., 2014, vol. 40, no. 2, p. 117.

    Article  Google Scholar 

  21. Tallon-Baudry, C., Bertrand, O., Peronnet, F., and Pernier, J., Induced gamma-band activity during the delay of the visual short-term memory task, J. Neurosci., 1998, vol. 18, no. 11, p. 4244.

    Article  PubMed  CAS  Google Scholar 

  22. Aftanas, L.I., Reva, N.V., Varlamov, A.A., Pavlov, S.V., and Makhnev, V.P., Analysis of evoked EEG synchronization and desynchronization in conditions of emotional activation in humans: temporal and topographic characteristics, Neurosci. Behav. Physiol., 2004, vol. 34, no. 8, p. 859.

    Article  PubMed  CAS  Google Scholar 

  23. Pavlygina, R.A., Davydov, V.I., Sakharov, D.S., Tutushkina, M.V., and Pryamonosova, A.A., The EEG during solution of mathematical logical tasks, Neurosci. Behav. Physiol., 2012, vol. 42, no. 1, p. 28.

    Article  Google Scholar 

  24. Aslanyan, E.V., Kiroi, V.N., Stoletnii, A.S., Lazurenko, D.M., Bakhtin, O.M., Minyaeva, N.R., and Kiroi, R.I., Effects of individual features on the ability of humans to produce voluntary control of the expression of the alpha and beta-2 EEG rhythms, Neurosci. Behav. Physiol., 2016, vol. 46, no. 8, p. 916.

    Article  Google Scholar 

  25. Aslanyan, E.V., Kiroy, V.N., Stoletnii, A.S., et al., Dynamics of interhemispheric relations at BFB-training, Psikhol. Zh., 2016, vol. 37, no. 1, p. 89.

    Google Scholar 

  26. Vorob’eva, O.V., Stress and adaptation disorders, Russ. Med. Zh., 2009, vol. 17, no. 11, p. 789.

    Google Scholar 

  27. Kostandov, E.A., Psikhofiziologiya soznaniya i bessoznatel’nogo (Psychophysiology of Consciousness and the Unconscious), St. Petersburg: Piter, 2004.

    Google Scholar 

  28. Kiroy, V.N., Functional state of the human brain in the dynamics of intellectual activity, Doctoral (Biol.) Dissertation, Rostov-on-Don, 1990.

    Google Scholar 

  29. Palva, S. and Palva, J.M., New vistas for alpha-frequency band oscillations, Trends Neurosci., 2007, vol. 30, no. 4, p. 150.

    Article  PubMed  CAS  Google Scholar 

  30. Aftanas, L.I. and Golosheikin, S.A., Changes in cortical activity during altered state of consciousness: study of meditation by high resolution EEG, Hum. Physiol., 2003, vol. 29, no. 2, p. 143.

    Article  Google Scholar 

  31. Knyazev, G.G., Motivation, emotion, and their inhibitory control mirrored in brain oscillations, Neurosci. Biobehav. Rev., 2007, vol. 31, no. 3, p. 377.

    Article  PubMed  Google Scholar 

  32. Alexander, D.M., Arns, M.W., Paul, R.H., et al., EEG markers for cognitive decline in elderly subjects with subjective memory complaints, J. Integr. Neurosci., 2006, vol. 5, no. 1, p. 49.

    Article  PubMed  Google Scholar 

  33. Stipacek, A., Grabner, R.H., Neuper, C., et al., Sensitivity of human EEG alpha band desynchronization to different working memory components and increasing levels of memory load, Neurosci. Lett., 2003, vol. 353, no. 3, p. 193.

    Article  PubMed  CAS  Google Scholar 

  34. Bazanova, O.M. and Shtark, M.B., Biofeedback in optimizing psychomotor reactivity: I. Comparison of biofeedback and common performance practice, Hum. Physiol., 2007, vol. 33, no. 4, p. 400.

    Article  Google Scholar 

  35. Laufs, H., Holt, J.L., Eltont, R., et al., Where the BOLD signal goes when alpha EEG leaves, NeuroImage, 2006, vol. 31, no. 4, p. 1408.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Aslanyan.

Additional information

Original Russian Text © E.V. Aslanyan, V.N. Kiroy, D.M. Lazurenko, 2018, published in Fiziologiya Cheloveka, 2018, Vol. 44, No. 3, pp. 34–42.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslanyan, E.V., Kiroy, V.N. & Lazurenko, D.M. Assessing the Efficiency of the Ability to Intentionally Variate the Power of β2 Frequencies in the Frontal Lobes of the Cerebral Cortex. Hum Physiol 44, 263–271 (2018). https://doi.org/10.1134/S0362119718030027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119718030027

Keywords

Navigation