Skip to main content
Log in

Analysis of Visual Cognitive Impairments in Schizophrenia at the Early Stages of the Disease and Their Correction by Interactive Virtual Environment

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The paper describes the results of studies aimed at evaluating the effect of interactive virtual environments on the visual system, including the magno-and parvo-systems. Analysis was conducted in patients diagnosed with paranoid schizophrenia diagnosed from one to five years ago. Comparative analysis of visual evoked potentials during the perception of images that differed in their semantic (animate/inanimate) and physical characteristics (filtration images at high/low spatial frequencies) was used for the assessment of the impact of virtual environments. The images of objects were filtered via digital filtration for selective effect on the magno-and parvo-channels of the visual system. To evaluate the function of visual perception, the measurement of contrast sensitivity using Gabor elements was used. At the early stages of schizophrenia, the patients exhibited a decrease in the amplitudes of the components of cognitive visual evoked potentials to stimuli filtered at high spatial frequencies and reduced contrast sensitivity at high spatial frequencies. The effect of virtual environments on the visual system resulted in a significant increase in the amplitude of the cognitive components of visual evoked potentials in the paradigm of presentation of images filtered at the high spatial frequencies, which allows the conclusion about a stimulating effect of the virtual environment on the parvo-system functioning. The activation of the magno-system occurred to a lesser extent. The present study represents the findings obtained by the studies of cognitive impairments in schizophrenia and the methods of their correction conducted at the Laboratory of Physiology of Vision of the Pavlov Institute of Physiology of the Russian Academy of Sciences and at the Laboratory of Neurobiology of Action Programming of the Bechtereva Institute of the Human Brain of the Russian Academy of Sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Green, M.F., Cognitive impairment and functional outcome in schizophrenia and bipolar disorder, J. Clin. Psychiatry, 2006, vol. 67, no. 9, p.3.

    Article  PubMed  Google Scholar 

  2. Ledda, M.G., Fratta, A.L., Pintor, M., et al., Early onset psychoses: comparison of clinical features and adult outcome in 3 diagnostic groups, Child Psychiatry Hum. Dev., 2009, vol. 40, no. 3, p.421.

    Article  PubMed  Google Scholar 

  3. Ardekani, B.A., Nierenberg, J., Hoptman, M.J., et al., MRI study of white matter diffusion anisotropy in schizophrenia, Neuroreport, 2003, vol. 14, p. 2025.

    Article  PubMed  Google Scholar 

  4. Braus, D.F., Weber-Fahr, W., Tost, H., et al., Sensory information processing in neuroleptic-naive first-episode schizophrenic patients: a functional magnetic resonance imaging study, Arch. Gen. Psychiatry, 2002, vol. 59, no. 8, p.696.

    Article  PubMed  Google Scholar 

  5. Brenner, C.A., Wilt, M.A., Lysaker, P.H., et al., Psychometrically matched visual processing tasks in schizophrenia spectrum disorders, J. Abnorm. Psychol., 2003, vol. 112, p.28.

    Article  PubMed  Google Scholar 

  6. Kim, D., Zemon, V., Saperstein, A., et al., Dysfunction of early-stage visual processing in schizophrenia: harmonic analysis, Schizophr. Res., 2005, vol. 76, p.55.

    Article  PubMed  Google Scholar 

  7. Leitman, D.I., Wolf, D.H., Laukka, P., et al., Not pitch perfect: sensory contributions to affective communication impairment in schizophrenia, Biol. Psychiatry, 2011, vol. 70, p.611.

    Article  PubMed  Google Scholar 

  8. Dias, E.C., Butler, P.D., Hoptman, M.J., and Javitt, D.C., Early sensory contributions to contextual encoding deficits in schizophrenia, Arch. Gen. Psychiatry, 2011, vol. 67, no. 7, p.654.

    Article  Google Scholar 

  9. Simonova, N.A., Garakh, Zh.V., Zaitseva, Yu.S., and Shmukler, A.B., Neurophysiological mechanisms of impaired visual perception in schizophrenia, Sots. Klin. Psikhiatr., 2014, vol. 24, no. 1, p.81.

    Google Scholar 

  10. Lalor, E.C., De Sanctis, P., Krakowski, M.I., and Foxe, J.J., Visual sensory processing deficits in schizophrenia: Is there anything to the magnocellular account? Schizophr. Res., 2012, vol. 139, p.246.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kim, D. and Park, S., Visual perception deficits associated with the magnocellular pathway in schizophrenia, Korean Schizophr. Res., 2011, vol. 14, p.61.

    Google Scholar 

  12. Chen, Y., Palafox, G.P., and Nakayama, K., Motion perception in schizophrenia, Arch. Gen. Psychiatry, 1999, vol. 56, p.149.

    Article  CAS  PubMed  Google Scholar 

  13. Butler, P.D. and Javitt, D.C., Early-stage visual processing deficits in schizophrenia, Curr. Opin. Psychiatry, 2005, vol. 18, no. 2, p.151.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kerri, S. and Benedek, G., Visual contrast sensitivity alterations in inferred magnocellular pathways and anomalous perceptual experiences in people at high risk for psychosis, Visual Neurosci., 2007, vol. 24, p.183.

    Article  Google Scholar 

  15. Oribe, N., Hirano, Y., Kanba, S., et al., Early and late stages of visual processing in individuals in prodromal state and first episode schizophrenia: an ERP study, Schizophr. Res., 2013, vol. 146, p.95.

    Article  PubMed  Google Scholar 

  16. Campbell, F.W. and Robson, J.G., Application of Fourier analyses to the visibility of gratings, J. Physiol., 1968, vol. 197, p.551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shelepin, Yu.E., Kolesnikova, L.N., and Levkovich, Yu.I., Vizokontrastometriya (Visocontrastometry), St. Petersburg: Nauka, 1985, p.105.

    Google Scholar 

  18. Murav’eva, S.V., Deshkovich, A.A., and Shelepin, Yu.E. The human magno and parvo systems and selective impairments of their functions, Neurosci. Behav. Physiol., 2009, vol. 39, no. 6, p.535.

    Article  PubMed  Google Scholar 

  19. Muraveva, S.V., Fokin, V.A., Efimtsev, A.Yu., and Shelepin, Yu.E., Spatial-frequent channels of the visual system in multiple sclerosis, Sens. Sist., 2013, vol. 27, no. 2, p.130.

    Google Scholar 

  20. Muraveva, S.V., Bisaga, G.N., Pronin, S.V., et al., The effect of the duration of the disease on changes in visual evoked potentials of contrast sensitivity in patients with multiple sclerosis, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2015, vol. 65, no. 6, p.711.

    CAS  Google Scholar 

  21. Shoshina, I.I., Shelepin, Yu.E., Konkina, S.A., Pronin, S.V., and Bendera, A.P., Studies of the parvocellular and magnocellular visual channels in health and psychopathology, Neurosci. Behav. Physiol., 2014, vol. 44, no. 2, p.244.

    Article  Google Scholar 

  22. Shoshina, I.I. and Shelepin, Yu.E., Contrast sensitivity in patients with schizophrenia of different durations of illness, Neurosci. Behav. Physiol., 2015, vol. 45, no. 5, p.512.

    Article  CAS  Google Scholar 

  23. Muraveva, S.V., Influence of the duration of the pathological process on the mango and parvo channels of the visual system in multiple sclerosis and schizophrenia, in Davidenkovskie chteniya (Davidenkov’s Biennial Meeting) (Proc. All-Russian Conf. with International Participation), St. Petersburg, 2015, p.179.

    Google Scholar 

  24. Plomp, G., Roinishvili, M., Chkonia, E., et al., Electrophysiological evidence for ventral stream deficits in schizophrenia patients, Schizophr. Bull., 2013, vol. 39, no. 3, p.547.

    Article  PubMed  Google Scholar 

  25. Kropotov, J.D., Pronina, M.V., Polyakov, J.I., and Ponomarev, V.A., Functional biomarkers in the diagnostics of mental disorders: cognitive event-related potentials, Hum. Physiol., 2013, vol. 39, no. 1, p.8.

    Article  CAS  Google Scholar 

  26. Kropotov, Yu.D., Kolichestvennaya EEG, kognitivnye vyzvannye potentsiala mozga cheloveka i neitropenitratsiya: uchebnik (Quantitative Electroencephalography, Cognitive Evoked Potentials of Human Brain and Neutropenitration: Manual), Donetsk: Izd. A.Yu. Zaslavskogo, 2010, p.512.

    Google Scholar 

  27. Gibson, J.J., The Ecological Approach to Visual Perception, New York, NY: Houghton Mifflin, 1979.

    Google Scholar 

  28. Schroeder, R., Defining virtual worlds and virtual environments, J. Virtual Worlds Res., 2008, vol. 1, no. 1, p.1.

    Google Scholar 

  29. Kuznetsov, P.P., Chebotarev, K.Yu., and Uzdenov, B.I., Medicine and virtual reality of the 21st century: creation of synthetic environment, trends, and innovations, Vrach Inf. Tekhnol., 2014, no. 3, p.72.

    Google Scholar 

  30. Moiseenko, G.A., Shelepin, Y.E., Kharauzov, A.K., Pronin, S.V., Chikhman, V.N., and Vakhrameeva, O.A., Classification and recognition of images of animate and inanimate objects, J. Opt. Technol., 2015, vol. 82, no. 10, p.685.

    Article  Google Scholar 

  31. Keil, A., Debener, S., Gration, G., et al., Committee report: publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography, Psychophysiology, 2014, vol. 51, p.1.

    Article  PubMed  Google Scholar 

  32. Leonard, C.J. and Luck, S.J., The role of magnocellular signals in oculomotor attentional capture, J. Vision, 2011, vol. 11, p.1.

    Article  Google Scholar 

  33. Schechter, I., Butler, P.D., Zemon, V.M., et al., Impairments in generation of early-stage transient visual evoked potentials to magno-and parvocellularselective stimuli in schizophrenia, Clin. Neurophysiol., 2005, vol. 116, p. 2204.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rassovsky, Y., Horan, W.P., Lee, J., et al., Pathways between early visual processing and functional outcome in schizophrenia, Psychol. Med., 2011, vol. 41, p.487.

    Article  CAS  PubMed  Google Scholar 

  35. Skottun, B.C. and Skoyles, J.R., Visually evoked potentials, NMDA receptors and the magnocellular system in schizophrenia, Acta Neuropsychiatrica, 2012, vol. 24, p.50.

    PubMed  Google Scholar 

  36. Lalor, E.C., De Sanctis, P., Krakowski, M.I., and Foxe, J.J., Visual sensory processing deficits in schizophrenia: Is there anything to the magnocellular account? Schizophr. Res., 2012, vol. 139, p.246.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Martinez, A., Hillyard, S.A., Bickel, S., et al., Consequences of magnocellular dysfunction on processing attended information in schizophrenia, Cereb. Cortex, 2012, vol. 22, no. 6, p. 1282.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Doniger, G.M., Foxe, J.J., Murray, M.M., et al., Im paired visual object recognition and dorsal/ventral stream interaction in schizophrenia, Arch. Gen. Psychiatry, 2002, vol. 59, p. 1011.

    Article  PubMed  Google Scholar 

  39. Shelepin, Yu., Shelepin, E., Pronin, S., and Yakimova, E., Neurotechnology for recovery of cognitive and motor function from psychosis and psychopathy, in Mental Health, Direction and Challenges (Abstr. World Psychiatric Association Regional Congr.), Tbilisi, 2016, p.74.

    Google Scholar 

  40. Muravyova, S., Moiseenko, G., Pronina, M., et al., Dysfunction of parvo–systems and its stimulation in patients with schizophrenia with early stage of the disease, in Perception (39th European Conf. on Visual Perception), Barcelona, Thousand Oaks: Sage, 2016, vol. 45. Supplement, p.14.

    Google Scholar 

  41. Muraveva, S.V., Pronina, M.V., Moiseenko, G.A., et al., The influence of sensorimotor load on the visual system of patients with schizophrenia in the early stages, in Sovremennye kontseptsii reabilitatsii v psikhonevrologii: otritsanie otritsaniya (Modern Concepts of Rehabilitation in Psychoneurology: Denial of Negation) (Proc. All-Russ. Congr. with International Participation), St. Petersburg, 2016, p. 260.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Muraveva.

Additional information

Original Russian Text © S.V. Muraveva, M.V. Pronina, G.A. Moiseenko, A.N. Pnevskaya, Yu.I. Polyakov, Yu.D. Kropotov, S.V. Pronin, E.Yu. Shelepin, Yu.E. Shelepin, 2017, published in Fiziologiya Cheloveka, 2017, Vol. 43, No. 6, pp. 24–36.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muraveva, S.V., Pronina, M.V., Moiseenko, G.A. et al. Analysis of Visual Cognitive Impairments in Schizophrenia at the Early Stages of the Disease and Their Correction by Interactive Virtual Environment. Hum Physiol 43, 625–636 (2017). https://doi.org/10.1134/S0362119717060056

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119717060056

Keywords

Navigation