Skip to main content
Log in

New approaches in the rehabilitation of patients with central nervous system lesions based on the gravitational mechanisms

  • Reviews
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

This review discusses the functioning of the motor system under normal and reduced gravity. Analysis of the experimental data led to the conclusion that all changes in the functioning of tonic muscular system are related to each other. When transiting to the state of microgravity, changes are caused by one common factor, namely a sharp decrease in the activity of support afferent input, specifically oriented to the perception and analysis of gravitational loads and firmly embedded in the mechanisms of postural synergism organization. We analyzed data obtained in studies on the activation of cortical areas of the brain during the stimulation of support afferents in order to test the hypothesis that such stimulation in both healthy subjects and patients with neurologic deficiency leads to activation of both the sensory and motor cortex involved in supraspinal control of the movement of the lower limbs, in particular when walking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grigor’ev, A.I., Kozlovskaya, I.B., and Shenkman, B.S., The role of supporting afferentation in the organization of the tonic muscular system, Ross. Fiziol. Zh. im. I.M. Sechenova, 2004, vol. 90, no. 5, p. 508.

    PubMed  Google Scholar 

  2. Kozlovskaya, I.B., Sensomotor functions and motor control systems, in Kosmicheskaya meditsina i biologiya (Space Medicine and Biology), Grigor’ev, A.I. and Ushakov, I.B., Eds., Voronezh: Nauchnaya Kniga, 2013.

  3. Kozlovskaya, I.B. and Kirenskaya, A.V., Mechanisms of disorders of the characteristics of fine movements in long-term hypokinesia, Neurosci. Behav. Physiol., 2004, vol. 34, no. 7, p. 747.

    Article  CAS  PubMed  Google Scholar 

  4. Kozlovskaya, I.B., Sayenko, I.V., Sayenko, D.G., et al., Role of support afferentation in control of the tonic muscle activity, Acta Astronaut., 2007, vol. 60, p. 285.

    Article  Google Scholar 

  5. Gevlich, G.I., Grigor’eva, L.S., Boiko, M.I., and Kozlovskaya, I.B., Evaluation of the tone of skeletal muscles by the registration of transverse stiffness, Kosm. Biol. Aviakosm. Med., 1983, no. 5, p. 86.

    Google Scholar 

  6. Miller, T.F., Saenko, I.V., Popov, D.V., et al., The effects of support deprivation and stimulation of the foot support zones on the lateral stiffness and electromyogram of the resting calf muscles, Hum. Physiol., 2012, vol. 38, no. 7, p. 763.

    Article  Google Scholar 

  7. Grigor’eva, L.S. and Kozlovskaya, I.B., The effect of the 7-day supporting unloading on the speed-strength properties of skeletal muscles, Kosm. Biol. Aviakosm. Med., 1983, no. 4, p. 21.

    Google Scholar 

  8. Shenkman, B.S., Structural and metabolic plasticity of skeletal muscles of mammals under hypokinesia and weightlessness, Aviakosm. Ekol. Med., 2002, vol. 36, no. 3, p. 3.

    CAS  Google Scholar 

  9. Koryak, Yu.A., Influence of 60-day simulated microgravity on human calf, Mezhd. Zh. Prikl. Fundam. Issled., 2014, no. 4, p. 79.

    Google Scholar 

  10. Koryak, Yu.A., Influence of long-term space flight on the isokinetic concentric and eccentric peak torque of different muscles and concentric performance capability of muscle knee extension, Mezhd. Zh. Prikl. Fundam. Issled., 2015, no. 10–4, p. 674.

    Google Scholar 

  11. Sayenko, D.G., Artamonov, A.A., and Kozlovskaya, I.B., Characteristics of postural corrective responses before and after long-term spaceflights, Hum. Physiol., 2011, vol. 37, no. 5, p. 91.

    Article  Google Scholar 

  12. Shpakov, A.V., Mechanisms of microgravity effect on biomechanical and kinematic characteristics of locomotion, Cand. Sci. (Biol.) Dissertation, Moscow: Inst. Biomed. Probl., Russ. Acad. Sci., 2012.

    Google Scholar 

  13. Alekseev, M.A., Askanzii, A.A., Naidel’, A.V., and Smetanin, B.N., Regulation of phased components of complex simultaneous movement of a man, in Sensornaya organizatsiya dvizhenii (Sensory Organization of Movements), Leningrad: Nauka, 1975, p. 5.

    Google Scholar 

  14. Gurfinkel’, V.S. and Levik, Yu.S., Sensory complexes and sensory integration, Fiziol. Chel., 1979, vol. 5, no. 3, p. 399.

    Google Scholar 

  15. Kirenskaya, A.V., Kozlovskaya, I.B., and Sirota, M.G., Influence of immersion hypokinesia on the rhythmic activity of motor units of soleus muscle, Fiziol. Chel., 1986, vol. 12, no. 1, p. 617.

    Google Scholar 

  16. Shigueva, T.A., Zakirova, A.Z., Tomilovskaya, E.S., and Kozlovskaya, I.B., Effect of support deprivation on the sequence of motor units recruiting, Aviakosm. Ekol. Med., 2013, vol. 47, no. 3, p. 50.

    CAS  Google Scholar 

  17. Otelin, A.A., Mashanskii, V.F., and Mirkin, A.S., Tel’tse Fater-Pachini. Strukturno-funktsional’nye osobennosti (Vater-Pacini Corpuscle: Structural and Functional Features), Leningrad: Nauka, 1976.

    Google Scholar 

  18. Netreba, A.I., Khusnutdinova, D.R., Vinogradova, O.L., and Kozlovskaya, I.B., Effects of dry immersion of various duration in combination with artificial stimulation of foot support zones upon forcevelocity characteristics of knee extensors, J. Gravitational Physiol., 2006, vol. 13, p. 71.

    Google Scholar 

  19. Mel’nik, K.A., Miller, T.F., Shpakov, A.V., and Kozlovskaya, I.B., Change of electromyographic parameters of locomotions during mechanical stimulation of foot support zones during 7-day “dry” immersion, Aviakosm. Ekol. Med., 2007, vol. 41, no. 6–1, p. 41.

    Google Scholar 

  20. Sayenko, D.G., Miller, T.F., Melnik, K.A., et al., Acute effects of dry immersion on kinematic characteristics of postural corrective responses, Acta Astronaut., 2016, vol. 121, p. 110.

    Article  Google Scholar 

  21. Ogneva, I.V., Ponomareva, E.V., Kartashkina, N.L., et al., Decrease of contractile properties and transversal stiffness of single fibers in human soleus after 7-day “dry” immersion, Acta Astronaut., 2011, vol. 68, nos. 9–10, p. 1478.

    Article  Google Scholar 

  22. Shenkman, B.S., From slow to fast. Hypogravitational reorganization of the myosin phenotype of muscle fibers, Acta Nat., 2016, vol. 8, no. 4 (31), p. 52.

    Google Scholar 

  23. Vil’chinskaya, N.A., Mirzoev, T.M., Lomonosova, Yu.N., et al., Influence of short-term “dry” immersion on the proteolytic signaling in human soleus muscle, Aviakosm. Ekol. Med., 2016, vol. 50, no. 1, p. 28.

    Google Scholar 

  24. Zakirova, A.Z., Shigueva, T.A., Tomilovskaya, E.S., and Kozlovskaya, I.B., Effects of mechanical stimulation of sole support zones on the H-reflex characteristics under conditions of support unloading, Hum. Physiol., 2015, vol. 41, no. 2, p. 150.

    Article  Google Scholar 

  25. Iseki, K., Hanakawa, T., Shinozaki, J., et al., Neural mechanisms involved in mental imagery and observation of gait, NeuroImage, 2008, vol. 41, p. 1021.

    Article  PubMed  Google Scholar 

  26. Jahn, K., Deutschländer, A., Stephan, T., et al., Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging, NeuroImage, 2004, vol. 22, p. 1722.

    Article  PubMed  Google Scholar 

  27. la Fougère, C., Zwergal, A., Rominger, A., et al., Real versus imagined locomotion: a [18F]-FDG PET-fMRI comparison, NeuroImage, 2010, vol. 50, p. 1589.

    Article  PubMed  Google Scholar 

  28. Bakker, M., De Lange, F.P., Helmich, R.C., et al., Cerebral correlates of motor imagery of normal and precision gait, NeuroImage, 2008, vol. 41, p. 998. doi 10.1016/j.neuroimage.2008.03.020

    Article  CAS  PubMed  Google Scholar 

  29. Bakker, M., de Lange, F.P., Stevens, J.A., et al., Motor imagery of gait: a quantitative approach, Exp. Brain Res., 2007, vol. 179, p. 497. doi 10.1007/s00221-006-0807-x

    Article  CAS  PubMed  Google Scholar 

  30. Blumen, H.M., Holtzer, R., Brown, L.L., et al., Behavioral and neural correlates of imagined walking and walking-while-talking in the elderly, Hum. Brain Mapp., 2014, vol. 35, p. 4090. doi 10.1002/hbm.22461

    Article  PubMed  PubMed Central  Google Scholar 

  31. Deutschländer, A., Stephan, T., Hüfner, K., et al., Imagined locomotion in the blind: an fMRI study, NeuroImage, 2009, vol. 45, p. 122. doi 10.1016/j.neuroimage. 2008.11.029

    Article  PubMed  Google Scholar 

  32. Wang, C., Wai, Y., Weng, Y., et al., The cortical modulation from the external cues during gait observation and imagination, Neurosci. Lett., 2008, vol. 443, p. 232. doi 10.1016/j.neulet.2008.07.084

    Article  CAS  PubMed  Google Scholar 

  33. Zwergal, A., Linn, J., Xiong, G., et al., Aging of human supraspinal locomotor and postural control in fMRI, Neurobiol. Aging, 2012, vol. 33, p. 1073. doi 10.1016/j.neurobiolaging.2010.09.022

    Article  PubMed  Google Scholar 

  34. Mehta, J.P., Verber, M.D., Wieser, J.A., et al., A novel technique for examining human brain activity associated with pedaling using fMRI, J. Neurosci. Methods, 2009, vol. 179, p. 230.

    Article  PubMed  Google Scholar 

  35. Dobkin, B.H., Firestine, A., West, M., et al., Ankle dorsiflexion as an fMRI paradigm to assay motor control for walking during rehabilitation, NeuroImage, 2004, vol. 23, p. 370. doi 10.1016/j.neuroimage. 2004.06.008

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sahyoun, C., Floyer-Lea, A., Johansen-Berg, H., and Matthews, P.M., Towards an understanding of gait control: brain activation during the anticipation, preparation and execution of foot movements, NeuroImage, 2004, vol. 21, p. 568. doi 10.1016/j.neuroimage. 2003.09.065

    Article  CAS  PubMed  Google Scholar 

  37. Trinastic, J.P., Kautz, S.A., McGregor, K., et al., An fMRI study of the differences in brain activity during active ankle dorsiflexion and plantarflexion, Brain Imaging Behav., 2010, vol. 4, p. 121. doi 10.1007/s11682-010-9091-2

    Article  PubMed  Google Scholar 

  38. Sacco, K., Cauda, F., Cerliani, L., et al., Motor imagery of walking following training in locomotor attention. The effect of “the tango lesson”, NeuroImage, 2006, vol. 32, no. 3, p. 1441.

    Article  CAS  PubMed  Google Scholar 

  39. Crenna, P. and Frigo, C., A motor program for the initiation of forward-oriented movements in humans, J. Physiol., 1991, vol. 437, p. 635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lafleur, M.F., Jackson, P.L., Malouin, F., et al., Motor learning produces parallel dynamic functional changes during the execution and imagination of sequential foot movements, NeuroImage, 2002, vol. 16, no. 1, p. 142.

    Article  PubMed  Google Scholar 

  41. Jackson, P.L., Lafleur, M.F., Malouin, F., et al., Functional cerebral reorganization following motor sequence learning through mental practice with motor imagery, NeuroImage, 2003, vol. 20, no. 2, p. 1171.

    Article  PubMed  Google Scholar 

  42. De Renzi, E., Faglioni, P., and Sorgato, P., Modalityspecific and supramodal mechanisms of apraxia, Brain, 1982, vol. 105, part 2, p. 301.

    Article  PubMed  Google Scholar 

  43. Labriffe, M., Annweiler, C., Amirova, L.E., et al., Brain activity during mental imagery of gait versus gaitlike plantar stimulation: a novel combined functional MRI paradigm to better understand cerebral gait control, Front. Hum. Neurosci., 2017, vol. 11, p. 106. doi 10.3389/fnhum.2017.00106.eCollection2017

    Article  PubMed  PubMed Central  Google Scholar 

  44. Iseki, K. and Hanakawa, T., The functional significance of the basal ganglia-thalamo-cortical loop in gait control in humans: a neuroimaging approach, Brain Nerve, 2010, vol. 62, no. 11, p. 1157.

    PubMed  Google Scholar 

  45. Nair, D.G., Purcott, K.L., Fuchs, A., et al., Cortical and cerebellar activity of the human brain during imagined and executed unimanual and bimanual action sequences: a functional MRI study, Cognit. Brain. Res., 2003, vol. 15, no. 3, p. 250.

    Article  Google Scholar 

  46. Kremneva, E.I., Chernikova, L.A., Konovalov, R.N., Krotenkova, M.V., Saenko, I.V., and Kozlovskaya, I.B., Activation of the sensorimotor cortex using a device for mechanical stimulation of the plantar support zones, Hum. Physiol., 2012, vol. 38, no. 1, p. 49.

    Article  Google Scholar 

  47. Kremneva, E.I., Chernikova, L.A., Konovalov, R.N., et al., Evaluation of supraspinal locomotion control in normal and pathological states using the passive motor fMRI paradigm, Ann. Klin. Eksp. Nevrol., 2012, vol. 6, no. 1, p. 31.

    Google Scholar 

  48. Kremneva, E.I., Saenko, I.V., Chernikova, L.A., Chervyakov, A.V., Konovalov, R.N., and Kozlovskaya, I.B., Specific activation of brain cortical areas in response to stimulation of the support receptors in healthy subjects and patients with focal lesions of the CNS, Hum. Physiol., 2013, vol. 39, no. 5, p. 524.

    Article  Google Scholar 

  49. Chernikova, L.A., Saenko, I.V., Konovalov, R.N., et al., Effects of the mechanical stimulation of supporting regions of foot in patients with acute stroke and neurovisual effects of walking imitation in healthy subjects, The 17th European Congr. of Physical and Rehabilitation Medicine, Venice, May 23–27, 2010, Abstracts of Papers, Torino: Minerva Medica, 2010, p. 26.

    Google Scholar 

  50. Chernikova, L.A., Kremneva, E.I., Chervyakov, A.V., Saenko, I.V., Konovalov, R.N., Piradov, M.A., and Kozlovskaya, I.B., New approaches in the study of the neuroplasticity process in patients with central nervous system lesions, Hum. Physiol., 2013, vol. 39, no. 3, p. 272.

    Article  Google Scholar 

  51. Glebova, O.V., Maksimova, M.Yu., and Chernikova, L.A., Mechanical stimulation of the support zones of the feet in acute stroke, Vestn. Vosstanov. Med., 2014, no. 1, p. 71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Saenko.

Additional information

Original Russian Text © I.V. Saenko, E.I. Kremneva, O.V. Glebova, R.N. Konovalov, L.A. Chernikova, I.B. Kozlovskaya, 2017, published in Fiziologiya Cheloveka, 2017, Vol. 43, No. 5, pp. 118–128.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saenko, I.V., Kremneva, E.I., Glebova, O.V. et al. New approaches in the rehabilitation of patients with central nervous system lesions based on the gravitational mechanisms. Hum Physiol 43, 591–600 (2017). https://doi.org/10.1134/S0362119717050139

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119717050139

Keywords

Navigation