Skip to main content
Log in

Features of temporal dynamics of oscillatory brain activity during creative problem solving in young and elderly adults

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Considering evidence from psychological research, successful aging is accompanied by long-term preservation of creative potential despite slowing of mental processes; however, the neurophysiological mechanisms that ensure the maintenance of those abilities are unclear. In this study, we compared temporal dynamics of changes induced by divergent task electrical activity (event-related spectral perturbations, ERSP) in a wide range of EEG frequencies in the younger (YA, N = 80, 22.6 ± 3 years) and older (OA, N = 80, 63.4 ± 6.7 years) age groups. The groups were sex-matched. EEG was recorded while participants performed the “alternate uses task”. The time ranges 200–400, 400–600 and 600–800 ms after stimulus presentation were analyzed. It was found that task performance was associated with distinct patterns of ERSP changes in the θ and α3 rhythms in young and elderly subjects. The elderly subjects exhibited smaller θ-desyn-chronization of anterior brain areas at the initial stage of creative thinking as compared to young participants. The gradient of fronto-parietal activation was unchanged during the entire interval of analysis in the elderly subjects, whereas it was observed in young adults in the interval 200–400 ms only. Decrease in desynchronization of the parieto-occipital area in the α3 rhythm in the interval 600–800 ms in elderly subjects was revealed, and it resulted in disappearance of differences between parietal and fronto-temporal areas, while they were preserved in the young group. Significant correlations between ERSP in the α3 band and originality, in the β1 band and solution rate were obtained in old adults exclusively. Identified age-related changes in oscillatory activity may be the basis of different strategies in solving creative task in young and elderly adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alpaugh, P.K. and Birren, J.E., Variables affecting creative contributions across the adult life span, Hum. Dev., 1977, vol. 20, no. 4, p. 240.

    Article  CAS  PubMed  Google Scholar 

  2. McCrae, R.R., Arenberg, D., and Costa, P.T., Declines in divergent thinking with age: cross-sectional, longitudinal, and cross-sequential analyses, Psychol. Aging, 1987, vol. 2, no. 2, p. 130.

    CAS  PubMed  Google Scholar 

  3. Palmiero, M., Giacomo, D.D., and Passafiume, D., Divergent thinking and age-related changes, Creativity Res. J., 2014, vol. 26, no. 4, p. 456.

    Article  Google Scholar 

  4. Leon, S.A., Altmann, L.J.P., Abrams, L., et al., Divergent task performance in older adults: declarative memory or creative potential?, Creativity Res. J., 2014, vol. 26, no. 1, p. 21.

    Article  Google Scholar 

  5. Roskos-Ewoldsen, B., Black, S.R., and McCown, S.M., Age related changes in creative thinking, J. Creative Behav., 2008, vol. 42, no. 1, p. 33.

    Article  Google Scholar 

  6. Salthouse, T.A., The processing-speed theory of adult age differences in cognition, Psychol. Rev., 1996, vol. 103, no. 3, p. 403.

    Article  CAS  PubMed  Google Scholar 

  7. Finkel, D., Reynolds, C.A., McArdle, J.J., and Pedersen, N.L., The longitudinal relationship between processing speed and cognitive ability: genetic and environmental influences, Behav. Genet., 2005, vol. 35, no. 5, p. 535.

    Article  PubMed  Google Scholar 

  8. Foos, P.W. and Boone, D., Adult age differences in divergent thinking: it’s just matter of time, Educ. Gerontol., 2008, vol. 34, no. 7, p. 587.

    Article  Google Scholar 

  9. Dietrich, A., The cognitive neuroscience of creativity, Psychon. Bull. Rev., 2004, vol. 11, no. 6, p. 1011.

    Article  PubMed  Google Scholar 

  10. Wallas, G., Art of Thought, New York: Harcourt, Brace and Company, 1926.

    Google Scholar 

  11. Finke, R.A., Ward, T.M., and Smith, S.M., Creative approaches to cognition, in Creative Cognition: Theory, Research and Applications, Cambridge, Mass.: MIT Press (Bradford Books), 1992.

    Google Scholar 

  12. Csikszentmihalyi, M., Creativity: Flow and the Psychology of Discovery and Invention, New York: Harper Perennial, 1996.

    Google Scholar 

  13. Zhao, Y., Tu, S., Lei, M., et al., The neural basis of breaking mental set: an event-related potential study, Exp. Brain Res., 2011, vol. 208, no. 2, p. 181.

    Article  PubMed  Google Scholar 

  14. Qiu, J., Li, H., Yang, D., et al., The neural basis of insight problem solving: an event-related potential study, Brain Cognit., 2008, vol. 68, no. 1, p. 100.

    Article  Google Scholar 

  15. Ivanitsky, A.M., Nikolaev, A.R., and Ivanitsky, G.A., Cortical connectivity during word association search, Int. J. Psychophysiol., 2001, vol. 42, no. 1, p. 35.

    Article  CAS  PubMed  Google Scholar 

  16. Klimesch, W., Doppelmayr, M., Pachinger, T., and Ripper, B., Brain oscillations and human memory performance: EEG correlates in the upper alpha and theta bands, Neurosci. Lett., 1997, vol. 238, nos. 1–2, p. 9.

    Article  CAS  PubMed  Google Scholar 

  17. Klimesch, W., EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis, Brain Res. Rev., 1999, vol. 29, nos. 2–3, p. 169.

    Article  CAS  PubMed  Google Scholar 

  18. Klimesch, W., Alpha-band oscillations, attention, and controlled access to stored information, Trends Cognit. Sci., 2012, vol. 16, no. 12, p. 606.

    Article  Google Scholar 

  19. Freunberger, R., Werkle-Bergner, M., and Griesmayr, B., Brain oscillatory correlates of working memory constraints, Brain Res., 2011, vol. 1375, p. 93.

    Article  CAS  PubMed  Google Scholar 

  20. Spitzer, B., Gloel, M., Schmidt, T.T., and Blankenburg, F., Working memory coding of analog stimulus properties in the human prefrontal cortex, Cereb. Cortex, 2014, vol. 24, no. 8, p. 2229.

    Article  PubMed  Google Scholar 

  21. Volf, N.V. and Gluhih, A.A., Background cerebral electrical activity in healthy mental aging, Hum. Physiol., 2011, vol. 37, no. 5, p. 559.

    Article  Google Scholar 

  22. Breslau, J., Starr, A., Sicotte, N., et al., Topographic EEG changes with normal aging and SDAT, Electroencephalogr. Clin. Neurophysiol., 1989, vol. 72, no. 4, p. 281.

    Article  CAS  PubMed  Google Scholar 

  23. Vlahou, E.L., Thurm, F., Kolassa, I., and Schlee, W., Resting-state slow wave power, healthy aging and cognitive performance, Sci. Rep., 2014, vol. 4, p. 5101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Volf, N.V. and Tarasova, I.V., The influence of reward on the performance of verbal creative tasks: behavioral and EEG effects, Hum. Physiol., 2013, vol. 39, no. 3, p. 302.

    Article  Google Scholar 

  25. Razumnikova, O.M., Volf, N.V., and Tarasova, I.V., Strategy and results: Sex differences in electrographic correlates of verbal and figural creativity, Hum. Physiol., 2009, vol. 35, no. 3, p. 285.

    Article  Google Scholar 

  26. Volf, N.V., Tarasova, I.V., and Razumnikova, O.M., Gender-related differences in changes in the coherence of cortical biopotentials during image-based creative thought: relationship with action efficacy, Neurosci. Behav. Physiol., 2010, vol. 40, no. 7, p. 793.

    Article  CAS  PubMed  Google Scholar 

  27. Annett, M.A., A classification of hand preference by association analysis, Br. J. Psychol., 1970, vol. 61, no. 3, p. 303.

    Article  CAS  PubMed  Google Scholar 

  28. Guilford, J.P., Christensen, P.R., Merrifield, P.R., and Wison, R.C., Alternate Uses: Manual of Instructions and Interpretation, Orange, Calif.: Sheridan Psychol. Serv., 1978.

    Google Scholar 

  29. Makeig, S., Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones, Electroencephalogr. Clin. Neurophysiol., 1993, vol. 86, no. 4, p. 283.

    Article  CAS  PubMed  Google Scholar 

  30. Delorme, A. and Makeig, S., EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis, J. Neurosci. Methods, 2004, vol. 134, no. 1, p. 9.

    Article  PubMed  Google Scholar 

  31. Doppelmayr, M., Klimesch, W., Pachinger, T., and Ripper, B., Individual differences in brain dynamics: important implications for the calculation of eventrelated band power, Biol. Cybern., 1998, vol. 79, no. 1, p. 49.

    Article  CAS  PubMed  Google Scholar 

  32. Benjamini, Y. and Hochberg, Y., Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Stat. Soc., Ser. B (Stat. Methodol.), 1995, vol. 57, no. 1, p. 289.

    Google Scholar 

  33. Kawamata, M., Kirino, E., Inoue, R., and Arai, H., Event-related desynchronization of frontal-midline theta rhythm during preconscious auditory oddball processing, Clin. EEG Neurosci., 2007, vol. 38, no. 4, p. 193.

    Article  PubMed  Google Scholar 

  34. Khursheed, F., Tandon, N., Tertel, K., et al., Frequency- specific electrocorticographic correlates of working memory delay period fMRI activity, NeuroImage, 2011, vol. 56, no. 3, p. 1773.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Volf, N.V. and Tarasova, I.V., Electrophysiological mechanisms and possibilities of increasing the figurative creativity on cash reward, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2012, vol. 62, no. 6, p. 692.

    CAS  Google Scholar 

  36. Aftanas, L.I., Emotsional’noe prostranstvo cheloveka: psikhofiziologicheskii analiz (Human Emotional Space: Psychophysiological Analysis), Novosibirsk: Sib. Otd. Ross. Akad. Med. Nauk, 2000.

    Google Scholar 

  37. Itthipuripat, S., Wessel, J.R., and Aron, A.R., Frontal theta is a signature of successful working memory manipulation, Exp. Brain Res., 2013, vol. 224, no. 2, p. 255.

    Article  PubMed  Google Scholar 

  38. Huang, L.Y., She, H.C., Chou, W.C., et al., Brain oscillation and connectivity during a chemistry visual working memory task, Int. J. Psychophysiol., 2013, vol. 90, no. 2, p. 172.

    Article  PubMed  Google Scholar 

  39. Cavanagh, J.F. and Frank, M.J., Frontal theta as a mechanism for cognitive control, Trends Cognit. Sci., 2014, vol. 18, no. 8, p. 414.

    Article  Google Scholar 

  40. Davis, S.W., Dennis, N.A., Daselaar, S.M., et al., Que PASA? The posterior-anterior shift in aging, Cereb. Cortex, 2008, vol. 18, no. 5, p. 1201.

    Article  PubMed  Google Scholar 

  41. Reuter-Lorenz, P.A. and Park, D.C., Human neuroscience and the aging mind: a new look at old problems, J. Gerontol., Ser. B, 2010, vol. 65, no. 4, p. 405.

    Article  Google Scholar 

  42. Turner, G.R. and Spreng, R.N., Executive functions and neurocognitive aging: dissociable patterns of brain activity, Neurobiol. Aging, 2012, vol. 33, no. 4, p. 826.

    Article  PubMed  Google Scholar 

  43. De Dreu, C.K., Nijstad, B.A., Baas, M., et al., Working memory benefits creative insight, musical improvisation, and original ideation through maintained taskfocused attention, Pers. Soc. Psychol. Bull., 2012, vol. 38, no. 5, p. 656.

    PubMed  Google Scholar 

  44. Benedek, M., Jauk, E., Sommer, M., et al., Intelligence, creativity, and cognitive control: the common and differential involvement of executive functions in intelligence and creativity, Intelligence, 2014, vol. 46, p. 73.

    PubMed  Google Scholar 

  45. Fink, A. and Benedek, M., EEG alpha power and creative ideation, Neurosci. Biobehav. Rev., 2014, vol. 44, p. 111.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lustenberger, C., Boyle, M.R., Foulser, A.A., et al., Functional role of frontal alpha oscillations in creativity, Cortex, 2015, vol. 67, p. 74.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schwab, D., Benedek, M., Papousek, I., et al. The time-course of EEG alpha power changes in creative ideation, Front. Hum. Neurosci., 2014, vol. 8, p. 310.

  48. Klimesch, W., Doppelmayr, M., and Hanslmayr, S., Upper alpha ERD and absolute power: their meaning for memory performance, Prog. Brain Res., 2006, vol. 159, p. 151.

    Article  PubMed  Google Scholar 

  49. Salisbury, D.F. and Taylor, G., Semantic priming increases left hemisphere theta power and inter-trial phase synchrony, Psychophysiology, 2012, vol. 49, no. 3, p. 305.

    Article  PubMed  Google Scholar 

  50. Kröger, S., Rutter, B., Hill, H., et al., An ERP study of passive creative conceptual expansion using a modified alternate uses task, Brain Res., 2013, vol. 1527, p. 189.

    Article  PubMed  Google Scholar 

  51. Händel, B.F., Haarmeier, T., and Jensen, O., Alpha oscillations correlate with the successful inhibition of unattended stimuli, J. Cognit. Neurosci., 2011, vol. 23, no. 9, p. 2494.

    Article  Google Scholar 

  52. Roux, F. and Uhlhaas, P.J., Working memory and neural oscillations: a versus codes for distinct WM information?, Trends Cognit. Sci., 2014, vol. 18, no. 1, p. 16.

    Article  Google Scholar 

  53. Bonnefond, M. and Jensen, O., Alpha oscillations serve to protect working memory maintenance against anticipated distracters, Curr. Biol., 2012, vol. 22, no. 20, p. 1969.

    Article  CAS  PubMed  Google Scholar 

  54. Payne, L. and Sekuler, R., The importance of ignoring: alpha oscillations protect selectivity, Curr. Dir. Psychol. Sci., 2014, vol. 23, no. 3, p. 171.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Scheeringa, R., Petersson, K.M., Kleinschmidt, A., et al., EEG a power modulation of fMRI resting-state connectivity, Brain Connect., 2012, vol. 2, no. 5, p. 254.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bakker, I., Takashima, A., van Hell, J.G., et al., Changes in theta and beta oscillations as signatures of novel word consolidation, J. Cognit. Neurosci., 2015, vol. 27, no. 7, p. 1286.

    Article  Google Scholar 

  57. Krause, C.M., Grönholm, P., Leinonen, A., et al., Modality matters: the effects of stimulus modality on the 4- to 30-Hz brain electric oscillations during a lexical decision task, Brain Res., 2006, vol. 1110, no. 1, p. 182.

    Article  CAS  PubMed  Google Scholar 

  58. Hanslmayr, S., Staudigl, T., and Fellner, M.C., Oscillatory power decreases and long-term memory: the information via desynchronization hypothesis, Front. Hum. Neurosci., 2012, vol. 6, p. 74.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Privodnova.

Additional information

Original Russian Text © E.Yu. Privodnova, N.V. Volf, 2016, published in Fiziologiya Cheloveka, 2016, Vol. 42, No. 5, pp. 5–12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Privodnova, E.Y., Volf, N.V. Features of temporal dynamics of oscillatory brain activity during creative problem solving in young and elderly adults. Hum Physiol 42, 469–475 (2016). https://doi.org/10.1134/S0362119716050133

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119716050133

Keywords

Navigation