Skip to main content
Log in

The influence of the functional state of brain regulatory systems on the programming, selective regulation and control of cognitive activity in children: I. Neuropsychological and EEG analysis of age-related changes in brain regulatory functions in children aged 9–12 years

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Age-related changes in brain regulatory functions were studied in children aged from 9 to 12 years with typical development by means of neuropsychological and EEG methods. Children without learning difficulties or behavior deviations (N=107) participated in the study and were divided into three age groups (9–10, 10–11, and 11–12 years). Neuropsychological tests revealed nonlinear age-related changes in different components of executive brain functions. Children aged 10–11 years showed better results in programming, inhibition of impulsive reactions, and in the perception of socially relevant information than 9 to 10-year-old children. At the same time, 10–11-year-old children showed decreased level of task performance motivation and had more pronounced difficulties with selective activity regulation, namely: difficulties in switching from one element of a program to another and in the retention of the action sequence. Children aged 11–12 years had less difficulties with selective activity regulation and a higher level of task performance motivation than children aged 10–11 years however, impulsive behavior was more frequent in older group. The analysis of resting-state EEG showed age-related differences in deviated EEG patterns associated with non-optimal functioning of the fronto-thalamic and hypothalamic structures. The incidence of these two types of EEG patterns were significantly higher in children aged 10–11 years than in children aged 9–10 years. We revealed no significant differences in EEG recorded from 10- to 11- and 11- to 12- year-old children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. New Oxford American Dictionary, McKean, E., Ed., New York: Oxford University Press, 2005, 2nd edition.

  2. Fiziologiya razvitiya rebenka: Rukovodstvo po vozrastnoi fiziologii (Pysiology of Child Development: A Handbook on Developmental Physiology) Bezrukikh, M.M., Farber, D.A, Eds., Moscow: MPSU, 2010.

  3. Semenova, L.K., Vasil’eva, V.A., and Tsekhmistrenko, T.A., Structural transformations of the human cerebral cortex in postnatal ontogeny, in Strukturnofunktsional’naya organizatsiya razvivayushchegosya mozga (Structural and Functional Organization of a Developing Brain), Adrianov, O.S. and Farber, D.A., Eds., Leningrad: Nauka, 1990, p. 8.

    Google Scholar 

  4. Gogtay, N., Giedd, J.N., Lusk, L., et al., Dynamic mapping of human cortical development during childhood through early adulthood, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, no. 21, p. 8174.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Lenroot, R.K. and Giedd, J.N., Brain development in children and adolescents: Insights from anatomical magnetic resonance imaging, Neurosci. Biobehav. Rev., 2006, vol. 30, no. 6, p. 718.

    Article  Google Scholar 

  6. Tsekhmistrenko, T.A., Vasil’eva, V.A., Shumeiko, N.S., and Chernykh, N.A., Structural transformations of the human cerebral cortex and cerebellum in postnatal ontogeny, in Razvitie mozga i formirovanie poznavatel’noi deyatel’nosti rebenka (Brain Development of Formation of Cognitive Activity in Children), Farber, D.A. and Bezrukikh, M.M., Eds., Moscow: MPSU, 2009, p. 9.

    Google Scholar 

  7. Mozgovye mekhanizmy formirovaniya poznavatel’noi deyatel’nosti v predshkol’nom i mladshem shkol’nom vozraste (Cerebral Mechanisms of the Formation of Cognitive Activity in Preschool and Early School Ages), Machinskaya, R.I. and Farber, D.A., Eds., Moscow: MPSU, 2014.

  8. Diamond, A., Normal development of prefrontal cortex from birth to young adulthood, in Principles of Frontal Lobe Function, Stuss, D.T. and Knight, R.T., Eds., New York: Oxford University Press, 2002, p. 466.

    Chapter  Google Scholar 

  9. Casey, B.J., Jones, R.M., and Hare, T.A., The adolescent brain, Ann. N. Y. Acad. Sci., 2008, vol. 1124, p. 111.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Brocki, K.C. and Bohlin, G., Executive functions in children aged 6 to 13: A dimensional and developmental study, Dev. Neuropsychol., 2004, vol. 26, no. 2, p. 571.

    Article  PubMed  Google Scholar 

  11. Somerville, L.H., Hare, T., and Casey, B.J., Frontostriatal maturation predicts cognitive control failure to appetitive cues in adolescents, J. Cogn. Neurosci., 2011, vol. 23, no. 9, p. 2123.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Crone, E.A., Bunge, S.A., Latenstein, H., and Van der Molen, M.W., Characterization of children’s decision making: Sensitivity to punishment frequency, not task complexity, Child Neuropsychol., 2005, no. 11, p. 245.

    Article  PubMed  Google Scholar 

  13. Crone, E.A., Somsen, R.J., Zanolie, K., and Van der Molen, M.W., A heart rate analysis of developmental change in feedback processing and rule shifting from childhood to early adulthood, J. Exp. Child Psychol., 2006, vol. 95, no. 2, p. 99.

    Article  PubMed  Google Scholar 

  14. Farber, D.A. and Ignat’eva, I.S., Influence of neuroendocrine shifts in the pubertal period on the working memory operation in adolescents, Hum. Physiol., 2006, vol. 32, no. 1, p. 1.

    Article  Google Scholar 

  15. Huttenlocher, P.R., Synaptic density in human frontal cortex: Developmental changes and effects of aging, Brain Res., 1979, vol. 163, no. 2, p. 195.

    Article  CAS  PubMed  Google Scholar 

  16. Dumontheil, I., Burgess, P.W., and Blakemore, S.J., Development of rostral prefrontal cortex and cognitive and behavioral disorders, Dev. Med. Child Neurol., 2008, vol. 50, no. 3, p. 168.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Sowell, E.R., Trauner, D.A., Gamst, A., and Jerniqan, T.L., Development of cortical and subcortical brain structures in childhood and adolescence: A structural MRI study, Dev. Med. Child Neurol., 2002, vol. 44, no. 1, p. 4.

    Article  PubMed  Google Scholar 

  18. Lebel, C., Walker, L., Leemans, A., et al., Microstructural maturation of the human brain from childhood to adulthood, Neuroimage, 2008, vol. 40, no. 3, p. 1044.

    Article  CAS  PubMed  Google Scholar 

  19. Alkonyi, B., Juhasz, C., Muzik, O., et al., Thalamocortical connectivity in healthy children: Asymmetries and robust developmental changes between ages 8 and 17 years, Am. J. Neuroradiol., 2011, vol. 32, no. 5, p. 962.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Fair, D.A., Bathula, D., Mills, K.L., et al., Maturing thalamocortical functional connectivity across development, Front. Syst. Neurosci., 2010, vol. 4.

  21. Qin, S., Young, Ch.B., Supekar, K., et al., Immature integration and segregation of emotion-related brain circuitry in young children, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 20, p. 7941.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Spear, L.P., The adolescent brain and age-related behavioral manifestations, Neurosci. Behav. Rev., 2000, vol. 24, no. 4, p. 417.

    Article  CAS  Google Scholar 

  23. Farber, D.A. and Machinskaya, R.I., Funktsional’naya organizatsiya mozga v ontogeneze i ee otrazhenie v elektroentsefalogramme pokoya, in Razvitie mozga i formirovanie poznavatel’noi deyatel’nosti rebenka (Brain Development of Formation of Cognitive Activity in Children), Farber, D.A. and Bezrukikh, M.M., Eds., Moscow: MPSU, 2009.

  24. Machinskaya, R.I., Lukashevich, I.P., and Fishman, M.N., Dynamics of brain electrical activity in 5- to 8-year-old normal children and children with learning difficulties, Hum. Physiol., 1997, vol. 23, no. 5, p. 517.

    Google Scholar 

  25. Lukashevich, I.P., Machinskaya, R.I., and Fishman, M.N., The EEG Expert automated diagnostic system, in Meditsinskaya Tekhnika (Medical Devices), Moscow: Meditsina, 1999, vol. 6, p. 29.

    Google Scholar 

  26. DuPaul, G.J., ADHD Rating Scale IV: Checklists, Norms, and Clinical Interpretation, New York: Guilford, 1998.

    Google Scholar 

  27. Luria, A.R., Vysshie korkovye funktsii cheloveka (Higher Cortical Functions of Humans), Moscow: Mos. Gos. Univ., 1969.

    Google Scholar 

  28. Semenova, O.A., A technique for estimating voluntary activity control in children of early school age, Nov. Issled. Al’manakh, 2006, vol. 10, no. 2, p. 71.

    Google Scholar 

  29. Kurgansky, A.V. and Machinskaya, R.I., Bilateral frontal theta-waves in EEG of 7–8-year-old children with learning difficulties: Qualitative and quantitative analysis, Hum. Physiol., 2012, vol. 38, no. 3, p. 255.

    Article  Google Scholar 

  30. Zhirmunskaya, E.A., Klinicheskaya elektroentsefalografiya. Obzor literatury i perspektivy ispol’zovaniya metoda (Clinical Electroencephalography: Literature Review and Prospects of Use), Moscow: Meibi, 1991.

    Google Scholar 

  31. Ucles, P. and Lorente, S., Electrophysiologic measures of delayed maturation in attention-deficit hyperactivity disorder, J. Child Neurol., 1996, vol. 11, no. 2, p. 155.

    Article  CAS  PubMed  Google Scholar 

  32. Latash, P., Gipotalamus, prisposobitel’naya aktivnost' i elektroentsefalogramma (The Hypothalamus, Adaptive Activity, and Electroencephalogram), Moscow: Nauka, 1968.

    Google Scholar 

  33. Fiziologiya podrostka (Adolescent Physiology) Farber, D.A., Ed., Moscow: Prosveshchenie, 1988.

  34. Boldyreva, G.N., Neirofiziologicheskii analiz porazheniya limbiko-dientsefal’nykh struktur mozga cheloveka (Neurophysiological Analysis of the Damage of Limbic–Diencephalic Structures of the Human Brain), Krasnodar: Ekoinvest, 2009.

    Google Scholar 

  35. Connemann, B.J., Mann, K., Lange-Asschenfeldt, Ch., et al., Anterior limbic alpha-like activity: A low resolution electromagnetic tomography study with lorazepam challenge, Clin. Neurophysiol., 2005, vol. 116, no. 4, p. 886.

    Article  PubMed  Google Scholar 

  36. Mallet, N., Pogosyan, A., Marton, L.F., et al., Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity, J. Neurosci., 2008, vol. 28, no. 52, p. 14245.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Semenova, O.A. and Machinskaya, R.I., Development of voluntary activity control in children of early school age, Vopr. Prakt. Pediatrii, 2007, vol. 2, no. 6, p. 17.

    Google Scholar 

  38. Semenova, O.A., Machinskaya, R.I., Akhutina, T.V., and Krupskaya, E.V., Brain mechanisms of voluntary regulation of activity during acquisition of the skill of writing in seven- to eight-year-old children, Hum. Physiol., 2001, vol. 27, no. 4, p. 405.

    Article  Google Scholar 

  39. Machinskaya, R.I., Sugrobova, G.A., and Semenova, O.A., Interdisciplinary approach to analysis of the cerebral mechanisms of learning difficulties in children: Experience of examination of children with signs of ADHD, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2013, vol. 63, no. 5, p. 542.

    CAS  Google Scholar 

  40. Banks, S.J., Eddy, K.T., Angstadt, M., et al., Amygdala–frontal connectivity during emotion regulation, Soc. Cogn. Affect. Neurosci., 2007, vol. 2, no. 4, p. 303.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Semenova.

Additional information

Original Russian Text © O.A. Semenova, R.I. Machinskaya, D.I. Lomakin, 2015, published in Fiziologiya Cheloveka, 2015, Vol. 41, No. 4, pp. 5–17.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenova, O.A., Machinskaya, R.I. & Lomakin, D.I. The influence of the functional state of brain regulatory systems on the programming, selective regulation and control of cognitive activity in children: I. Neuropsychological and EEG analysis of age-related changes in brain regulatory functions in children aged 9–12 years. Hum Physiol 41, 345–355 (2015). https://doi.org/10.1134/S036211971504012X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S036211971504012X

Keywords

Navigation