Skip to main content
Log in

The mechanism of change in the rate of agglutination of human erythrocytes under the influence of adrenaline

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The study of erythrocytes of 80 men showed that adrenaline (10−10–10−6 g/mL) and phenylephrine (10−10–10−6 g/mL) dose-dependently increase the rate of agglutination of erythrocytes, judging by the decrease in the start time of agglutination, whereas ginipral (10−10–10−7 g/mL), on the contrary, decreases it. The effect of adrenaline and phenylephrine is blocked by nicergoline (10−6 g/mL), enhanced by obzidan (10−6 g/mL), and is not changed by yohimbine (10−6 g/mL) and atenolol (10−6 g/mL). These data indicate that the rate of agglutination increases with the activation of α1-adrenergic receptor (AR) and decreases with the activation of β2-AR, whereas the activation of α2- and β1-AR does not affect it. Trifluoperazine (10−6 g/mL) as a calmodulin antagonist, barium chloride (10−6 g/mL) as a Ca2+-dependent K+-channel blocker, and indomethacin (10−6 g/mL) as an inhibitor of cyclooxygenase and phospholipase A2 inhibit the ability of adrenaline to increase the rate of agglutination of erythrocytes. This suggests that this effect of adrenaline is caused by an increased Ca2+ entry into the erythrocyte, activation of calmodulin, cyclooxygenase, and phospholipase A2, and subsequent K+ release from the erythrocytes through the Ca2+-dependent K+ channels, which is regarded as a manifestation of eryptosis. Indirectly, this means that the potentiation of activation of α1-AR and β2-AR, respectively, increases and, conversely, decreases the rate of eryptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsirkin, V.I., Gromova, M.A., Kolchina, D.A., et al., Otsenka adrenoreaktivnosti eritrotsitov, osnovannaya na sposobnosti adrenalina povyshat’ skorost’ agglyutinatsii eritrotsitov, Fundam. Issled., 2008, no. 7, p. 59.

    Google Scholar 

  2. Mishchenko, N.V., Rodygina, S.N., Sizova, E.N., and Tulyakova, O.V., Features of agglutination of erythrocytes depending on the place of habitation of donors, Vestnik Novosibirsk. Gos. Univ., 2010, vol. 8, no. 1, p. 142.

    Google Scholar 

  3. Volodchenko, A.I., Kolokol’tseva, E.A., Tsirkin, V.I., and Kostyaev, A.A., Adrenoreactivity of erythrocytes of women at various stages of the reproductive process, determined by adrenodependent agglutination, in Mater. Mezhdunar. Nauch. Konf. “Sistemnoe krovoobrashchenie, mikrotsirkulyatsiya i gemoreologiya (ot angiogeneza do tsentral’nogo krovoobrashcheniya)” (Proc. Int. Sci. Conf. “Systemic Blood Circulation, Microcirculation, and Hemorheology (from Angiogenesis to the Central Circulation)), A.V. Murav’ev, Sci. Ed., Yaroslavl, 2011, p. 6.

    Google Scholar 

  4. Horga, J., Gisbert, J., De Agustin, J., et al., A beta-2-adrenergic receptor activates adenylate cyclase in human erythrocyte membranes at physiological calcium plasma concentrations, Blood Cells Mol. Dis., 2000, vol. 26, no. 3, p. 223.

    Article  PubMed  CAS  Google Scholar 

  5. Mineeva, P.V., Gruppy krovi cheloveka. Osnovy immunogematologii (Human Blood Groups: Fundamentals of Immunohematology), St. Petersburg, 2004.

    Google Scholar 

  6. Glantz, S., Mediko-biologicheskaya statistika (Biomedical Statistics), Moscow: Praktika, 1999.

    Google Scholar 

  7. Wu, D., Katz, A., Lee, C.-H., and Simon, M.I., Activation of phospholipase C by alpha 1-adrenergic receptors is mediated by the alpha subunits of Gq family, J. Biol. Chem., 1992, vol. 267, no. 36, p. 25798.

    PubMed  CAS  Google Scholar 

  8. Guimaraes, S. and Moura, D., Vascular adrenoreceptors: an update, Pharmacol. Rev., 2001, vol. 53, no. 2, p. 319.

    PubMed  CAS  Google Scholar 

  9. Maimistova, A.A., Koshelev, V.B., Bulaeva, S.V., and Murav’ev, A.V., Changes in the aggregation and deformability of erythrocytes during activation of intracellular signaling pathways, Yaroslav. Ped. Vestnik, 2010, no. 3, p. 71.

    Google Scholar 

  10. Boivin, P. and Galand, C., Is spectrin a calmodulinbinding protein?, Biochem. Int., 1984, vol. 8, p. 231.

    PubMed  CAS  Google Scholar 

  11. Mische, S., Mooseker, M., and Morrow, J., Erythrocyte adducing: a calmodulin-regulated actin-binding protein that stimulated spectrin-actin binding, J. Cell Biol., 1987, vol. 105, p. 2837.

    Article  PubMed  CAS  Google Scholar 

  12. Husain, A., Howlett, G., and Sawyer, W., The interaction of calmodulin with erythrocyte membrane proteins, Biochem. Int., 1985, vol. 10, p. 1.

    PubMed  CAS  Google Scholar 

  13. Storozhok, S.A., Sannikov, A.G., and Belkin, A.V., Zavisimost’ stabil’nosti deformabel’nosti membran eritrotsitov ot mezhmolekulyarnykh vzaimodeistvii belkov tsitoskeleta (Dependence of the Stability of the Erythrocyte Membrane Deformability on the Intermolecular Interactions of Cytoskeletal Proteins), Tyumen’: Izd. TyumGU, 1997, vol. 3, p. 140.

    Google Scholar 

  14. Huestis, W.H., Nelson, M., and Ferrell, J.E., Calmodulin-dependent spectrin kinase activity in human erythrocytes, Prog. Clin. Biol. Res., 1981, vol. 256, p. 137.

    Google Scholar 

  15. Faquin, W.C., Chahwala, S.B., Cantley, L.C., and Branton, D., Protein kinase C of human erythrocytes phosphorylates bands 4.1 and 4.9, Biochem. Biophys. Acta, 1986, vol. 887, no. 2, p. 142.

    Article  PubMed  CAS  Google Scholar 

  16. Postnov, Y.V., Kravtsov, G.M., Orlov, S.N., et al., Effect of protein kinase C activation on cytoskeleton and cation transport in human erythrocytes. Reproduction of some membrane abnormalities revealed in essential hypertension, Hypertension, 1988, vol. 12, p. 267.

    Article  PubMed  CAS  Google Scholar 

  17. Deuticke, B., Grunze, M., Forst, B., and Luetkemeier, P., Influence of enzymatic phospholipid cleavage on the permeability of the erythrocyte membrane: III. Discrimination between the causal role of split products and of lecithin removal, J. Membr. Biol., 1981, vol. 59, no. 1, p. 45.

    Article  PubMed  CAS  Google Scholar 

  18. Burak, M.Y., Bolgen, O., Eskandari, G., et al., In vivo effect of meloxicam, celecoxib, and ibuprofen on free radical metabolism in human erythrocytes, Drug Chem. Toxicol., 2003, vol. 26, no. 3, p. 169.

    Article  Google Scholar 

  19. Soldati, L., Lombardi, C., Adamo, D., et al., Arachidonic acid increases calcium in erythrocytes, Biochem. Biophys. Res. Commun., 2002, vol. 293, p. 974.

    Article  PubMed  CAS  Google Scholar 

  20. Kaestner, L. and Bernar, I., Ion channels in the human red blood cell membrane: their further investigation and physiological relevance, Bioelectrochemistry, 2002, vol. 55, p. 71.

    Article  PubMed  CAS  Google Scholar 

  21. Mindukshev, I.V., Krivoshlyk, V.V., Dobrylko, I.A., et al., Disturbance of deformational and transport characteristics of erythrocytes during the development of their apoptosis, Biol. Membr., 2010, vol. 27, no. 1, p. 28.

    CAS  Google Scholar 

  22. Byshevskii, A.Sh., Galyan, S.L., Dement’eva, I.A., et al., Trombotsity (sostav, funktsii, biomeditsinskoe znachenie) (Platelets (Composition, Functions, and Biomedical Significance)), Tyumen’, 1996.

    Google Scholar 

  23. Krutetskaya, Z.I., Lebedev, O.E., and Kurilova, L.S., Mekhanizmy vnutrikletochnoi signalizatsii (Intracellular Signaling Mechanisms), St. Petersburg: Izd. S.-Peterb. Univ., 2003.

    Google Scholar 

  24. Mushkambarov, N.N. and Kuznetsov, S.L., Molekulyarnaya biologiya (Molecular Biology), Moscow: OOO Med. Inform. Agent., 2007.

    Google Scholar 

  25. Lang, F., Birka, C., Myssina, S., et al., Erythrocyte ion channels in regulation of apoptosis, Adv. Exp. Med. Biol., 2004, vol. 559, p. 211.

    Article  PubMed  CAS  Google Scholar 

  26. Lang, F., Lang, K.S., Lang, P.A., et al., Mechanisms and significance of eryptosis, Antioxid. Redox. Signal., 2006, vol. 8, nos. 7–8, p. 1183.

    Article  PubMed  CAS  Google Scholar 

  27. Lang, F. and Qadri, S.M., Mechanisms and significance of eryptosis, the suicidal death of erythrocytes, Blood Purif., 2012, vol. 33, nos. 1–3, p. 125.

    Article  PubMed  Google Scholar 

  28. Attanasio, P., Shumilina, E., Hermle, T., et al., Stimulation of eryptosis by anti-A IgG antibodies, Cell Physiol. Biochem., 2007, vol. 20, no. 5, p. 591.

    Article  PubMed  CAS  Google Scholar 

  29. Föller, M., Huber, S.M., and Lang, F., Erythrocyte programmed cell death, IUBMB Life, 2008, vol. 60, no. 10, p. 661.

    Article  PubMed  Google Scholar 

  30. Krysova, A.V., Kunshin, A.A., and Tsirkin, V.I., Role of α- and β-adrenergic receptors in the realization of the ability of adrenaline to change the osmotic resistance of erythrocytes of nonpregnant women, Vyatsk. Med. Vestnik, 2011, nos. 3–4, p. 8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.I. Volodchenko, V.I. Tsirkin, A.A. Kostyaev, 2014, published in Fiziologiya Cheloveka, 2014, Vol. 40, No. 2, pp. 67–74.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volodchenko, A.I., Tsirkin, V.I. & Kostyaev, A.A. The mechanism of change in the rate of agglutination of human erythrocytes under the influence of adrenaline. Hum Physiol 40, 171–178 (2014). https://doi.org/10.1134/S0362119714010198

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119714010198

Keywords

Navigation