Skip to main content
Log in

Ergoreflex: The essence and mechanisms

  • Reviews
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Physical load increases sympathetic nervous activity, which results in an increased cardiac output, constriction of peripheral vessels, and elevated systemic blood pressure. These changes are outcomes of two mechanisms: the central command from cerebral structures that trigger voluntary movements to activate the vasomotor center and the reflexes initiated by mechanical and metabolic changes in a working muscle. The latter mechanism of the sympathetic system activation is termed ergoreflex. The main effects of ergoreflex on the indices of systemic hemodynamics are the following: activation of mechanosensitive afferents mainly leads to inhibition of the tonic vagal effects on the heart, which explains the rapid increase in heartbeats upon loading; activation of chemosensitive afferents comes with some delay in pace with metabolite accumulation in muscles and leads to an increase in efferent sympathetic activity and a rise in blood pressure. The metabolic reflex effect is particularly high in the case of muscle fatigue. This review deals with the mechanisms underlying the ergoreflex and their adaptation to hypodynamia, physical training, and some pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vinogradova, O.L., Stoida, Yu.M., and Mano, T., et al., The Effect of Gravitation Unloading on Blood Supply to Functioning Muscles, Aviakosm. Ekol. Med., 2002, vol. 36, no. 3, p. 39.

    CAS  Google Scholar 

  2. Machkov, V.V., Tarasova, O.S., Timin, E.N., et al., Attenuation of the Efficiency of Vasoconstrictory Effects in Rats after a 3-week vyveshivaniya, Aviakosm. Ekol. Med., 1997, vol. 31, no. 6, p. 43.

    CAS  Google Scholar 

  3. Netreba, A.I., Popov, D.V., Lyubaeva, E.V., et al., Physiological Effects of Use of Low-Intensity Strength Training without Relaxation in One-Jointed and Many-Jointed Movements, Ros. Fiziol. Zh.. im. I.M. Sechenova, 2007, vol. 93,issue 1, p. 27.

    CAS  Google Scholar 

  4. Popov, D.V., Tsvirkun, D.V., Netreba, A.I., et al., Hormonal Adaptation Determining the Increase in Muscle Mass and Strength during Low-Intensity Strength Training without Relaxation, Hum. Physiol., 2006, vol. 32, no. 5, p. 609.

    Article  CAS  Google Scholar 

  5. Seluyanov, V.N., Podgotovka beguna na srednie distantsii (Training Short-Distance Runners), Moscow, 2001.

  6. Alam, M. and Smirk, F., Observations in Man Upon a Blood Pressure Rising Reflex Arising from the Voluntary Muscles, J. Physiol., 1937, vol. 89, p. 372.

    PubMed  CAS  Google Scholar 

  7. Buckwalter, J.B., Mueller, P.J., and Clifford, P.S., Alpha1-Adrenergic-Receptor Responsiveness in Skeletal Muscle during Dynamic Exercise, J. Appl. Physiol., 1998, vol. 85, no. 6, p. 2277.

    PubMed  CAS  Google Scholar 

  8. Clark, A.L., Poole-Wilson, P.A., and Coats, A.J., Exercise Limitation in Chronic Heart Failure: Central Role of the Periphery, J. Am. Coll. Cardiol., 1996, vol. 28, p. 1092.

    Article  PubMed  CAS  Google Scholar 

  9. Davies, C. and Starkie, D., The Pressor Response to Voluntary and Electrically Evoked Isometric Contractions in Man, Eur. J. Appl. Physiol., 1985, vol. 53, p. 359.

    Article  CAS  Google Scholar 

  10. Edgerton, V.R. and Roy, R.R., Neuromuscular Adaptations to Actual and Simulated Spaceflight, Handbook of Physiology. Environmental Physiology. The Gravitational Environment, Bethesda: Am. Physiol. Soc., 1996.

    Google Scholar 

  11. Fisher, J.P., Bell, M.P., and White, M.J., Cardiovascular Responses to Human Calf Mucle Stretch during Varying Levels of Muscle Metaboreflex Activation, Exp. Physiol., 2005, vol. 90, p. 773.

    Article  PubMed  Google Scholar 

  12. Fu, Q., Levine, B., and Pawelczyk, J., Cardiovascular and Sympathetic Neural Responses to Handgrip and Cold Pressor Stimuli in Humans Before, during and after Spaceflight, J. Physiol., 2002, vol. 544, no. 2, p. 635.

    Article  Google Scholar 

  13. Gao, Z., Henig, O., Hekoe, V., et al., Vanilloid Type 1 Receptor and the Acid-Sensing Ion Channel Mediate Acid Phosphate Activation of Muscle Afferent Nerves in Rats, J. Appl. Physiol., 2006, vol. 100, no. 2, p. 421.

    Article  PubMed  CAS  Google Scholar 

  14. Gladwell, V.F. and Coote, J.H., Heart Rate at the Onset of Muscle Contraction and during Passive Muscle Stretch in Humans: A Role for Mechanoreceptors, J. Physiol., 2002, vol. 540, p. 1095.

    Article  PubMed  CAS  Google Scholar 

  15. Goldspink, G., Mechanical Signals, IGF-I Gene Splicing, and Muscle Adaptation, Physiology (Bethesda), 2005, vol. 20, p. 232.

    Article  PubMed  CAS  Google Scholar 

  16. Hanna, R.L. and Kaufman M.P. Role Played by Purinergic Receptors on Muscle Afferents in Evoking the Exercise Pressor Reflex, J. Appl. Physiol., 2003, vol. 94, p. 1437.

    PubMed  CAS  Google Scholar 

  17. Hanna, R.L. and Kaufman, M.P., Activation of Thin-Fiber Muscle Afferents by a P2X Agonist in Cats, J. Appl. Physiol., 2004, vol. 96, p. 1166.

    Article  PubMed  CAS  Google Scholar 

  18. Herr, M., Imadojemu, V., Kunselman, A., et al., Characteristics of the Muscle Mechanoreflex during Quadriceps Contractions in Humans, J. Appl. Physiol., 1999, vol. 86, p. 767.

    PubMed  CAS  Google Scholar 

  19. Ichinose, M. and Nishiyasu, T., Muscle Metaboreflex Modulates the Arterial Baroreflex Dynamic Effects on Peripheral Vascular Conductance in Humans, Am. J. Physiol. Heart. Circ. Physiol., 2005, vol. 288, no. 4, p. 1532.

    Article  Google Scholar 

  20. Immke, D.C. and McCleskey, E.W., Lactate Enhances the Acid-Sensing Na+ Channel on Ischemia-Sensing Neurons, Nat. Neurosci., 2001, vol. 4, no. 9, p. 869.

    Article  PubMed  CAS  Google Scholar 

  21. Iwase, S., Sugiyama, Y., Miwa, C., et al., Effects of Three Days of Dry Immersion on Muscle Sympathetic Nerve Activity and Arterial Blood Pressure in Humans, J. Auton. Nerv. Syst., 2000, vol. 79, p. 156.

    Article  PubMed  CAS  Google Scholar 

  22. Kamiya, A., Iwase, S., Kitazawa, H., et al., Effects of 120 Days of 6o Head-Down Bed Rest on Autonomic Regulation of Cardiovascular Functions, Kosm. Biol. Aviakosm. Med., 1998, vol. 2, p. 373.

    Google Scholar 

  23. Kamiya, A., Iwase, S., Ktiazawa, H., et al., Baroreflex Control of Muscle Sympathetic Nerve Activity After 120 Days of 6o Head-Down Bed Rest, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2000, vol. 278, no. 2, p. 445.

    Google Scholar 

  24. Kamiya, A., Michikami, D., Shiozawa, T., et al., Bed Rest Attenuates Sympathetic and Pressor Responses to Isometric Exercise in Antigravity Leg Muscles in Humans, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2004, vol. 286, p. 844.

    Article  Google Scholar 

  25. Kao, F.F., An Experimental Study of the Pathways Involved in Exercise Hyperpnea Employing Cross-Circulation Techniques, in The Regulation of Human Respiration, Cunningham, D.C., and Lloyd, B.B., Eds., Oxford: Blackwell, 1963.

    Google Scholar 

  26. Kaufman, M.P., Longhurst, J.C., Rybicki, K.J., et al., Effects of Static Muscular Contraction on Impulse Activity of Group III and IV Afferents in Cats, J. Appl. Physiol., 1983, vol. 55, p. 105.

    PubMed  CAS  Google Scholar 

  27. Kaufman, M.P., Rybicki, K.J., Waldrop, T.G., et al., Effect of Ischemia on Responses of Group III and IV Afferents to Contraction, J. Appl. Physiol., 1984, vol. 57, p. 644.

    PubMed  CAS  Google Scholar 

  28. Lazarowski, E., Richard, C., Boucher, R., et al., Mechanisms of Release of Nucleotides and Integration of Their Action as P2X- and P2Y-Receptor Activating Molecules, Mol. Pharmacol., 2003, vol. 64, p. 785.

    Article  PubMed  CAS  Google Scholar 

  29. Li, J. and Sinoway, L.I., ATP Stimulates Chemically Sensitive and Sensitizes Mechanically Sensitive Afferents, Am. J. Physiol. Heart. Circ. Physiol., 2002, vol. 283, p. 2636.

    Google Scholar 

  30. Li, J., King, N.C., and Sinoway, L.I., ATP Concentrations and Muscle Tension Increase Linearly with Muscle Contraction, J. Appl. Physiol., 2003, vol. 95, p. 577.

    PubMed  CAS  Google Scholar 

  31. Li, J., Maile, M., Sinoway, A., et al., Muscle Pressor Reflex: Potential Role of Vanilloid Type 1 Receptor and Acid-Sensing Ion Channel, J. Appl. Physiol., 2004, vol. 97, p. 1709.

    Article  PubMed  CAS  Google Scholar 

  32. Li, J., King, N., and Sinoway, L., Interstitial ATP and NE Concentrations in Active Muscle, Circulation, 2005, vol. 111, no. 21, p. 2748.

    Article  PubMed  CAS  Google Scholar 

  33. MacLean, D.A., Imadojemu, V.A., and Sinoway, L.I., Interstitial PH, K+, Lactate and Phosphate Determined with MSNA during Exercise in Humans, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2000, vol. 278, p. 563.

    Google Scholar 

  34. Mark, A.L., Victor, R.G., Nerhed, C., et al., Microneurographic Studies of the Mechanisms of Sympathetic Nerve Responses to Static Exercise in Humans, Circ. Res., 1985, vol. 57, p. 461.

    Article  PubMed  CAS  Google Scholar 

  35. McClain, J., Hardy, C., Enders, B., et al., Limb Congestion and Sympathoexcitation During Exercise: Implications for Congestive Heart Failure, J. Clin. Invest., 1993, vol. 92, p. 2353.

    Article  PubMed  CAS  Google Scholar 

  36. McCloskey, D.I. and Mitchell, J.H., Reflex Cardiovascular and Respiratory Responses Originating in Exercising Muscle, J. Physiol., 1972, vol. 224, p. 173.

    PubMed  CAS  Google Scholar 

  37. Mitchell, J.H., Kaufmann, M.P., and Iwamoto, G.A., The Exercise Pressor Reflex: Its Cardiovascular Effects, Afferent Mechanisms, and Central Pathways, Annu. Rev. Physiol., 1983, vol. 45, p. 229.

    Article  PubMed  CAS  Google Scholar 

  38. Mostoufi-Moab, S., Widmaier, E.J., Cornett, J.A., et al., Forearm Training Reduces the Exercise Pressor Reflex during Ischemic Rhythmic Handgrip, J. Appl. Physiol., 1998, vol. 84, p. 277.

    PubMed  CAS  Google Scholar 

  39. Nakagawa, H. and Hiura, A., Capsaicin, Transient Receptor Potential (TRP) Protein Subfamilies and the Particular Relationship between Capsacin Receptors and Small Primary Sensory Neurons, Anat. Sci. Int., 2006, vol. 81, no. 3, p. 135.

    Article  PubMed  CAS  Google Scholar 

  40. O’Leary, D.S., Robinson, E.D., and Butler J.L. Is Active Skeletal Muscle Functionally Vasoconstricted during Dynamic Exercise in Conscious Dogs?, Am. J. Physiol., 1997, vol. 272, p. 386.

    Google Scholar 

  41. Ratevic, V. and Burnstock, G., Receptors for Purines and Pyrimidines, Pharmacol. Rev., 1998, vol. 50, p. 413.

    Google Scholar 

  42. Rotto, D.M. and Kaufman, M.P., Effect of Metabolic Products of Muscular Contraction on Discharge of Group III and IV Afferents, J. Appl. Physiol., 1988, vol. 64, no. 6, p. 2306.

    PubMed  CAS  Google Scholar 

  43. Rotto, D.M., Stebbins, C.L., and Kaufman, M.P. Reflex Cardiovascular and Ventilatory Responses to Increasing H+ Activity in Cat Hindlimb Muscle, J. Appl. Physiol., 1989, vol. 67, no. 1, p. 256.

    PubMed  CAS  Google Scholar 

  44. Rowell, L.B. and O’Leary, D.S., Reflex Control of the Circulation during Exercise: Chemoreflexes and Mechanoreflexes, J. Appl. Physiol., 1990, vol. 69, p. 407.

    PubMed  CAS  Google Scholar 

  45. Rowell, L.B., Central Circulatory Adjustments to Dynamic Exercise, Hum. Cardiovasc. Control, 1993, vol. 7, p. 255.

    Google Scholar 

  46. Rybicki, K.J., Kaufman, M.P., and Waidrop, T.G., Increasing Gracilis Muscle Interstitial Potassium Concentrations Stimulate Group III and IV Afferents, J. Appl. Physiol., 1985, vol. 58, no. 3, p. 936.

    PubMed  CAS  Google Scholar 

  47. Saltin, B. and Gollnick, P.D., Skeletal Muscle Adaptability: Significance for Metabolisms and Performance, Handbook Physiol., 1983, vol. 10, no. 19, p. 555.

    Google Scholar 

  48. Scott, A.C., Wensel, R., Davos, C.H., et al., Skeletal Muscle Reflex in Heart Failure Patients: Role of Hydrogen, Circulation, 2003, vol. 107, p. 300.

    Article  PubMed  CAS  Google Scholar 

  49. Seals, D.R., Washburn, R.A., Hanson, P.G., et al., Increased Cardiovascular Response to Static Contraction of Larger Muscle Groups, J. Appl. Physiol., 1983, vol. 54, p. 434.

    PubMed  CAS  Google Scholar 

  50. Seals, D.R., Sympathetic Neural Adjustments to Stress in Physically Trained and Untrained Humans, Hypertension, 1991, vol. 17, p. 36.

    Article  PubMed  CAS  Google Scholar 

  51. Silber, D.H., Sutliff, G., Yang, Q.X., et al., Altered Mechanisms of Sympathetic Activation During Rhythmic Forearm Exercise in Heart Failure, J. Appl. Physiol., 1998, vol. 84, p. 1551.

    Article  PubMed  CAS  Google Scholar 

  52. Sinoway, L. and Li, J., A Perspective on the Muscle Reflex: Implication for Congestive Heart Failure, J. Appl. Physiol., 2005, vol. 99, p. 5.

    Article  PubMed  CAS  Google Scholar 

  53. Somers, V.K., Leo, K.C., Shields, R., et al., Forearm Endurance Training Attenuates Sympathetic Nerve Response to Isometric Handgrip in Normal Humans, J. High Resolut. Chromatogr. Chromatogr. Commun., 1992, vol. 72, p. 1039.

    CAS  Google Scholar 

  54. Sunberg, C.J., Exercise and Training During Graded Leg Ischaemia in Healthy Man with Special Reference to Effects on Skeletal Muscle, Acta Physiol. Scand. Suppl., 1994, vol. 615, p. 1.

    Google Scholar 

  55. Svedenhag, J., Wallin, B.G., Sundlof, G., et al., Skeletal Muscle Sympathetic Activity at Rest in Trained and Untrained Subjects, Acta Physiol. Scand. Suppl., 1984, vol. 120, p. 499.

    Article  CAS  Google Scholar 

  56. Takarada, Y., Nakamura, Y., Aruga, S., et al., Rapid Increase in Plasma Growth Hormone after Low-Intensity Resistance Exercise with Vascular Occlusion, J. Appl. Physiol., 2000, vol. 88, no. 1, p. 61.

    PubMed  CAS  Google Scholar 

  57. Thimm, F. and Baum, K., Response of Chemosensitive Nerve Fibers of Group III and IV to Metabolic Changes in Rat Muscles, Pflugers Arch., 1987, vol. 410, p. 143.

    Article  PubMed  CAS  Google Scholar 

  58. VanTeeffelen, J.W. and Segal, S.S., Interaction between Sympathetic Nerve Activation and Muscle Fibre Contraction in Resistance Vessels of Hamster Retractor Muscle, J. Physiol., 2003, vol. 550, p. 563.

    Article  PubMed  CAS  Google Scholar 

  59. Viru, M., Jansson E., Viru, A., and Sundberg, C.J., Effect of Restricted Blood Flow on Exercise-Induced Hormone Changes in Healthy Men, Eur. J. Appl. Physiol. Occup. Physiol., 1998, vol. 77, no. 6, p. 517.

    Article  PubMed  CAS  Google Scholar 

  60. White, M.J. and Carrington, C.A., The Pressor Response to Involuntary Isometric Exercise of Young and Elderly Human Muscle with Reference to Muscle Contractile Characteristics, Eur. J. Appl. Physiol., 1993, vol. 66, p. 338.

    Article  CAS  Google Scholar 

  61. White, M.J. and Bell, M., Blood Pressure Responses to External Compression of the Human Lower Leg during Calf Muscle Chemoreflex Stimulation of Varying Intensity, J. Physiol., 2003, vol. 551, p. 40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.L. Vinogradova, D.V. Popov, O.S. Tarasova, Ya.R. Bravyi, S.S. Missina, E.Yu. Bersenev, A.S. Borovik, 2008, published in Aviakosmicheskaya i Ekologicheskaya Meditsina, 2008, Vol. 42, No. 1, pp. 5–15.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinogradova, O.L., Popov, D.V., Tarasova, O.S. et al. Ergoreflex: The essence and mechanisms. Hum Physiol 38, 665–674 (2012). https://doi.org/10.1134/S0362119712070250

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119712070250

Keywords

Navigation