Skip to main content
Log in

Ontogenetic model of gravity and weightlessness: Theoretical and applied aspects

  • Reviews
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The review discusses the previously postulated natural adaptive motor strategies evolving during the human life span and their link to sensory conditions, among which gravity and temperature play the predominant role. The initial FM strategy based on the dominance of fast-twitch motor fibers is characteristic of intrauterine immersion in the amniotic fluid and microgravity in a real space flight (G∼0). According to this paradigm, the process of parturition when the newborn experiences a sensory attack of Earth’s gravity (1G) and a lower temperature can be considered equivalent to an astronaut’s landing. This postnatal GE strategy is opposite to the FM strategy, because it decreases the motor unit (MU) firing and causes the activity of muscle fibers to slow down. The next SJ strategy appears in normal aging, which is expressed in further dominance of slow-twitch MU and discreet motor control, thus stimulating hypergravity (>1G). Cooling evokes similar adaptive reactions. The synergy of sensory inputs acting upon the motor system within the strategies suggests the possibility of their mutual substitution. For example, a moderate sensory cold attack may serve as a partial surrogate of gravity (∼0.2G), which could be used as a countermeasure for the unfavorable effects of a long-term space flight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meigal, A.Yu. and Voroshilov, A.S., Perinatal Model of Human Transition from Hypogravity to Earth’s Gravity Based on the Nonlinear Electromyogram Characteristics, Aviakosmich. Ekol. Med., 2009, vol. 43, p. 14.

    Google Scholar 

  2. Meigal, A.Yu., Ontogeneticheskii podkhod k vliyaniyu gravitatsii i nevesomosti na neiromyshechnyi status cheloveka (Ontogenetic Approach to the Influence of Gravity and Weightlessness on the Human Neuromuscular Status), Proc. of VI All-Rus. Intern. Conf., Moscow, 2011, p. 60.

  3. Singer, D. and Mühlfeld, C., Perinatal Adaptation in Mammals: The Impact of Metabolic Rate, Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2007, vol. 14, p. 780.

    Article  Google Scholar 

  4. Singer, D., Neonatal Tolerance to Hypoxia: A Comparative Physiological Approach, Comp. Biochem. Physiol. A Mol. Integr. Physiol., 1999, vol. 123, p. 221.

    Article  PubMed  CAS  Google Scholar 

  5. Einspieler, C., Prechtl, H.F., Ferrari, F., et al., The Qualitative Assessment of General Movements in Preterm, Term, and Young Infants-Review of the Methodology, Early Hum. Dev., 1997, vol. 50, p. 47.

    Article  PubMed  CAS  Google Scholar 

  6. Shabalov, N.P., Neonatalogiya (Neonatology), 2 vols., Moscow: Medpress, 2006.

    Google Scholar 

  7. Meigal, A.Yu., Pavlova, I.V., Lupandin, Yu.V., et al., Thermoregulatory Activity of Motor Units during Human Development, Arctic Med. Res., 1995, vol. 54, p. 192.

    PubMed  CAS  Google Scholar 

  8. Zaripova, Yu.R., Sokolov, A.L., Voroshilov, A.S., and Meigal, A.Yu., Activity of Motor Units in Healthy Children in the Neonatal Period of Life, Vopr. Prakt. Pediatr., 2010, vol. 5,appendix 1, p. 23.

    Google Scholar 

  9. Son’kin, V.D. and Tambovtseva, R.M., Razvitie myshechnoi energetiki i rabotosposobnosti v ontogeneze (Development of Muscular Energetics and Working Capacity in Ontogenesis), Moscow: USSR, 2010.

    Google Scholar 

  10. Eken, T., Elder, G.C.B., and Lømo, T., Development of Tonic Firing Behavior in Rat Soleus Muscle, J. Neurophysiol., 2008, vol. 99, p. 1899.

    Article  PubMed  Google Scholar 

  11. Meigal, A.Iu., Rissanen, S., Kankaanpää, M., et al., Novel Parameters of Surface EMG in Patients with Parkinson’s Disease in Healthy Young and Old Controls, J. Electromyogr. Kinesiol., 2009, vol. 19, p. e206.

    Article  PubMed  CAS  Google Scholar 

  12. Mulder, E.R., Gerrits, K.H., Rittweger, J., et al., Characteristics of Fast Voluntary and Electrically Evoked Isometric Knee Extensions during 56 Days of Bed Rest with and without Exercise Countermeasure, Eur. J. Appl. Physiol., 2008, vol. 103, p. 431.

    Article  PubMed  CAS  Google Scholar 

  13. Trappe, S., Trappe, T., Gallagher, P., et al., Human Single Fiber Function with 84-Day Bed-Rest and Resistance Exercise, J. Physiol., 2004, vol. 557, p. 501.

    Article  PubMed  CAS  Google Scholar 

  14. Ishihara, A., Oishi, Y., Roy, R.R., and Edgerton, V.R., Influence of Two Weeks of Nonweight Bearing on Rat Soleus Motoneurons and Muscle Fibers, Aviat. Space Environ. Med., 1997, vol. 68, p. 421.

    PubMed  CAS  Google Scholar 

  15. Kozlovskaya, I.B., Gravityal Mechanisms in the Motor System, Sovremennyi kurs klassicheskoi fiziologii (Modern Course of Classical Physiology), Natochin, Yu.V. and Tkachuk, V.A., Eds., Moscow: Geotar-Media, 2007.

    Google Scholar 

  16. Kozlovskaya, I.B. and Kirenskaya, A.V., Mechanisms of Disorders of the Characteristics of Fine Movements in Long-Term Hypokinesia, Neurosci. Behav. Physiol., 2004, vol. 34, p. 747.

    Article  PubMed  CAS  Google Scholar 

  17. Nybo, L., Hyperthermia and Fatigue, J. Appl. Physiol., 2008, vol. 104, p. 871.

    Article  PubMed  Google Scholar 

  18. Hunter, A.M., St. Clair Gibson, A., Mbambo, Z., et al., The Effects of Heat Stress on Neuromuscular Activity during Endurance Exercise, Pflügers Arch., 2002, vol. 444, p. 738.

    Article  PubMed  CAS  Google Scholar 

  19. Gandevia, S.C., Spinal and Supraspinal Factors in Human Muscle Fatigue, Physiol. Rev., 2001, vol. 811, p. 725.

    Google Scholar 

  20. Todd, G., Butler, J.E., Taylor, J.L., and Gandevia, S.C., Hyperthermia: A Fatigue of the Motor Cortex and the Muscle, J. Physiol., 2005, vol. 563, p. 621.

    Article  PubMed  CAS  Google Scholar 

  21. Merton, P.A., Voluntary Strength and Fatigue, J. Physiol., 1954, vol. 123, p. 553.

    PubMed  CAS  Google Scholar 

  22. Marsden, C.D., Meadows, J.C., and Merton, P.A., “Muscular Wisdom” that Minimizes Fatigue during Prolonged Effort in Man: Peak Rates of Motoneuron Discharge and Slowing of Discharge during Fatigue, Adv. Neurol., 1983, vol. 39, p. 169.

    PubMed  CAS  Google Scholar 

  23. Meigal, A.Yu., Gerasimova, L.I., and Lupandin, Yu.V., Voluntary Control of the Motor Units in Hyperthermia of the Body, Fiziol. Chel., 1999, vol. 25, no. 2, p. 111.

    Google Scholar 

  24. Kudina, L.P. and Alexeeva, N.I., Repetitive Doublets of Human Motoneurons: Analysis of Interspike Intervals and Recruitment Pattern, EEG Clin. Neurophysiol., 1992, vol. 85, p. 243.

    CAS  Google Scholar 

  25. Gurfinkel’, V.S., Levik, Yu.S., Poleshchuk, N.K., and Korovin, Yu.V., Dependence of Heat Production of Skeletal Muscle on the Regimen of Its Contraction, Fiziol. Chel., 1981, vol. 7, no. 1, p. 46.

    Google Scholar 

  26. Meigal, A.Yu. and Pis’mennyi, K.N., Influence of General Heating and Cooling on the Postactivation Effect in the Upper Limb Muscles, Fiziol. Chel., 2009, vol. 35, no. 1, p. 60.

    Google Scholar 

  27. Ishihara, A., Itoh, K., Itoh, M., and Hirofuji, C., Effect of Hypobaric Hypoxia on Rat Soleus Muscle Fibers and Their Innervating Motoneurons: A Review, Jpn. J. Physiol., 2000, vol. 50, p. 561.

    Article  PubMed  CAS  Google Scholar 

  28. Sorokina, L.V., Lupandin, Yu.V., and Vlasova, L.P., Thermoregulatory Activity of the Motoneuron Pool in Rats Adapted to Cold and Hypoxia, Fiziol. Zh. SSSR, 1984, vol. 70, p. 75.

    PubMed  CAS  Google Scholar 

  29. Arshavskii, I.A., Fiziologicheskie mekhanizmy i zakonomernosti individual’nogo razvitiya (Physiological Mechanisms and Regularities of Individual Development), Moscow: Nauka, 1982.

    Google Scholar 

  30. Ruegg, D.G., Kakebeeke, T.H., Gabriel, J.P., and Bennefeld, M., Conduction Velocity of Nerve and Muscle Fiber Action Potentials after a Space Mission or a Bed Rest, Clin. Neurophysiol., 2003, vol. 114, p. 86.

    Article  PubMed  Google Scholar 

  31. Kotovskaya, A.R., Vil’-Vil’yams, I.F., Luk’yanyuk, V.Yu., and Kataev, Yu.V., Tolerance by Astronauts of +Gx Overloads during Space Flights on Board Soyuz Type Spaceships in the Experiments of ISS-1, 6–9, and EF-1-7 ISS, Aviakosmich. Ekol. Med., 2005, vol. 39, no. 5, p. 3.

    Google Scholar 

  32. Klass, M., Baudry, S., and Duchateau, J., Age-Related Decline in Rate of Torque Development Is Accompanied by Lower Maximal Motor Unit Discharge Frequency during Fast Contractions, J. Appl. Physiol., 2008, vol. 104, p. 739.

    Article  PubMed  Google Scholar 

  33. Shima, N., McNeil, C.J., and Rice, C.L., Mechanomyographic and Electromyographic Responses to Stimulated and Voluntary Contractions in the Dorsiflexors of Young and Old Men, Muscle Nerve, 2007, vol. 35, p. 371.

    Article  PubMed  Google Scholar 

  34. Doherty, T.J., Vandervoort, A.A., and Brown, W.F., Effects of Aging on the Motor Unit: A Brief Review, Can. J. Appl. Physiol., 1993, vol. 18, p. 331.

    Article  PubMed  CAS  Google Scholar 

  35. Tracy, B.L., Maluf, K.S., Stephenson, J.L., et al., Variability of Motor Unit Discharge and Force Fluctuations across a Range of Muscle Forces in Older Adults, Muscle Nerve, 2005, vol. 32, p. 533.

    Article  PubMed  Google Scholar 

  36. Häkkinen, K., Kallinen, M., Izquierdo, M., et al., Changes in Agonist-Antagonist EMG, Muscle CSA, and Force during Strength Training in Middle-Aged and Older People, J. Appl. Physiol., 1998, vol. 84, p. 1341.

    PubMed  Google Scholar 

  37. Fimbel, E.J. and Arguin, M., Myocontrol in Aging, Plos One, 2007, vol. 2, p. e1219.

    Article  PubMed  Google Scholar 

  38. Oksa, J., Neuromuscular Performance Limitations in Cold, Int. J. Circumpolar Health, 2002, vol. 61, p. 154.

    PubMed  Google Scholar 

  39. Oksa, J., Rintamäki, H., and Rissanen, S., Muscle Performance and Electromyogram Activity of the Lower Leg Muscles with Different Levels of Cold Exposure, Eur. J. Appl. Physiol., 1997, vol. 75, p. 484.

    Article  CAS  Google Scholar 

  40. Oksa, J., Ducharme, M.B., and Rintamäki, H., Combined Effect of Repetitive Work and Cold on Muscle Function and Fatigue, J. Appl. Physiol, 2002, vol. 92, p. 354.

    PubMed  Google Scholar 

  41. Meigal, A.Yu., Oksa, J., Gerasimova, L.I., and Rintamäki, H., Muscle Fatigue and Recovery in Cold Environment, Proc. of IX ICEE, Werner, J. and Hexamer, M., Eds., Aachen: Shaker Verlag, 2000.

    Google Scholar 

  42. Burton, A.C. and Bronk, D.W., The Motor Mechanism of Shivering and Thermal Muscular Tone, Am. J. Physiol., 1937, vol. 119, p. 284.

    Google Scholar 

  43. Levine, J.A., Non-Exercise Activity Thermogenesis (NEAT), Nutr. Rev., 2004, vol. 62, p. S82.

    Article  PubMed  Google Scholar 

  44. Israel, D.J. and Pozos, R.S., Synchronized Slow-Amplitude Modulations in the Electromyograms of Shivering Muscles, J. Appl. Physiol, 1989, vol. 66, p. 2358.

    PubMed  CAS  Google Scholar 

  45. Meigal, A.Yu., Gross and Fine Neuromuscular Performance at Cold Shivering, Int. J. Circumpolar Health, 2002, vol. 61, p. 163.

    PubMed  Google Scholar 

  46. Kleinebeckel, D. and Klussmann, F.W., Shivering, Thermoregulation: Physiology and Biochemistry, Schönbaum, E. and Lomax, P., Eds., New York: Pergamon, 1990.

    Google Scholar 

  47. Bligh, J., Temperature Regulation in Mammals and Other Vertebrates, Frontiers Biol., 1973, vol. 30, p. 436.

    Google Scholar 

  48. Meigal, A.Yu., Oksa, J., Hohtola, E., et al., Influence of Cold Shivering on Fine Motor Control in the Upper Limb, Acta Physiol. Scand., 1998, vol. 16, p. 341.

    Google Scholar 

  49. Lupandin, Yu.V., Regulation of the Function of γ- and α-Motoneurons of Antagonistic Muscles during Cold Tremor in Cats, Neirofiziologiya, 1983, vol. 15, p. 242.

    Google Scholar 

  50. Lupandin, Yu.V., Role of the Fusimotor System in the Regulation of Shivering, Fiziol. Zh. SSSR im. I.M. Sechenova, 1979, vol. 65, p. 1661.

    PubMed  CAS  Google Scholar 

  51. Petajian, J.H. and Williams, D.D., Behavior of Single Motor Units during Preshivering Tone and Shivering Tremor, Am. J. Phys. Med., 1972, vol. 51, p. 16.

    Google Scholar 

  52. Pozos, R.S. and Iaizzo, P.A., Shivering and Pathological and Physiological Clonic Oscillations of the Human Ankle, J. Appl. Physiol, 1991, vol. 71, p. 1929.

    PubMed  CAS  Google Scholar 

  53. Hemingway, A., Shivering, Physiol. Rev., 1963, vol. 43, p. 397.

    PubMed  CAS  Google Scholar 

  54. Meigal, A.Yu., Lupandin, Yu.V., and Hänninen, O., Head and Body Position Affect Thermoregulatory Tonus in Deltoid Muscles, J. Appl. Physiol, 1996, vol. 80, p. 1397.

    PubMed  CAS  Google Scholar 

  55. Meigal, A.Yu., Lupandin, Iu.V., and Hänninen, O., Influence of Cold and Hot Conditions on Postactivation in Human Skeletal Muscles, Pflüg. Arch., 1996, vol. 432, p. 121.

    Article  CAS  Google Scholar 

  56. Human, F., Legault, S.R., Rakobowchuk, M., et al., Effects of Carbohydrate Availability on Sustained Shivering II. Relating Muscle Recruitment to Fuel Selection, J. Appl. Physiol, 2004, vol. 96, p. 41.

    Article  Google Scholar 

  57. Mateika, J.H., Essif, E., and Fregosi, R.F., Effect of Hypoxia on Abdominal Motor Unit Activities in Spontaneously Breathing Cats, J. Appl. Physiol, 1996, vol. 81, p. 2428.

    PubMed  CAS  Google Scholar 

  58. Tikuisis, P., Bell., D.G., and Jacobs, I., Shivering Onset, Metabolic Response, and Convective Heat Transfer during Cold Air Exposure, J. Appl. Physiol., 1991, vol. 70, p. 1996.

    PubMed  CAS  Google Scholar 

  59. Meigal, A.Yu., Oksa, J., Gerasimova, L.I., et al., Force Control of Isometric Elbow Flexion with Visual Feedback in Cold with and without Shivering, Aviat. Space Environ. Med., 2003, vol. 74, p. 816.

    PubMed  Google Scholar 

  60. Smolander, J., Mikkelsson, M., Oksa, J., et al., Thermal Sensation and Comfort in Women Exposed Repeatedly to Whole-Body Cryotherapy and Winter Swimming in Ice-Cold Water, Physiol. Behav., 2004, vol. 82, p. 691.

    Article  PubMed  CAS  Google Scholar 

  61. Grigor’ev, A.I. and Egorov, A.D., Long-Term Space Flights, Kosmicheskaya biologiya i meditsina (Space Biology and Medicine), 5 vols., Antipov, V.V., Grigor’ev, A.I., and Lich Khantun, K., Eds., vol. 3, book 2, Moscow: Nauka, 1997.

    Google Scholar 

  62. Kotovskaya, A.R., Galle, R.R., and Shipov, A.A., National Research into the Problem of Artificial Gravity, Kosmich. Biol. Aviat. Med., 1981, vol. 15, no. 2, p. 72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.Yu. Meigal, 2011, published in Fiziologiya Cheloveka, 2011, Vol. 37, No. 6, pp. 130–138.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meigal, A.Y. Ontogenetic model of gravity and weightlessness: Theoretical and applied aspects. Hum Physiol 37, 755–762 (2011). https://doi.org/10.1134/S0362119711060119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119711060119

Kewords

Navigation