Skip to main content
Log in

Gravity as a Factor in Evolutionary Adaptation of Animals to Living on the Earth

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The review considers the current ideas about the role of the gravitational factor in activities of the sensorimotor and cardiovascular systems, as well as new basic problems and questions of space medicine and physiology. The review presents data on animal embryonic development in weightlessness, evolution of the motor and cardiovascular systems, and characteristics of their functions in conditions of normal and altered gravity. Much attention is paid to the results of unique studies with ground-based gravitational unloading models: head-down bed rest, dry immersion and hindlimb suspension, in which the mechanisms that regulate various body systems under conditions of altered gravity were studied. Terrestrial organisms have learned to live in the gravitational field. Almost all of their body systems are gravity dependent. However, the extent and mechanisms of this dependence remained unclear for a long time. Space flights opened up the possibility of studying the activity of living systems in the absence of gravity. Changes in activity of sensory systems are among the main factors that mediate the effect of weightlessness on the motor system. Under the Earth’s conditions, the afferent support of motor control is polyreceptive and involves vision, the vestibular apparatus, and support and muscular proprioception. In microgravity, activity of some channels is completely eliminated (support afferentation), distorted (vestibular apparatus), or weakened (proprioception). Similar processes occur in the cardiovascular system: loss of the gravity-dependent pressure gradient causes profound changes in the structure and function of the heart and vessels, including both resistive and capacitive ones. It is still an open question as to how much the various changes occurring in the cardiovascular system are associated with the disappearance of the gravity-dependent pressure gradient. Some questions of gravitational physiology are impossible to answer in space flights experiments. Various methods were therefore developed to simulate the effects of gravitational unloading on the Earth. New knowledge on the mechanisms of changes occurring in the sensorimotor system was gotten by comparing space flight data and data obtained in model experiments. A basic problem of gravitational physiology of the cardiovascular system is the degree of correspondence between changes observed in laboratory animals or under model conditions (bed rest, immersion, and hindlimb suspension) and changes recorded in humans during real space flights. The problem is specially discussed in the review. Many issues remain unresolved in the light of future inter-planetary missions, including the problems of post-flight readaptation of the motor and cardiovascular systems to normal gravity conditions. Another problem is preventing losses of strength, endurance, and orthostatic stability. The development and improvement of countermeasures for preventing the negative effects of space flight is impossible without understanding the mechanisms that underlie the observed changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Darwin, Ch., On the Origin of Species by Means of Natural Selection, London: John Murrey, 1859.

    Google Scholar 

  2. Neubert, J., Briegleb, W., Schatz, A., and Hertwig, I., The response of structure and function of the gravireceptors in a vertebrate to near weightlessness, Acta Astronaut., 1988, vol. 17, no. 2, pp. 257–262.

    CAS  PubMed  Google Scholar 

  3. Franz-Odendaal, T.A. and Edsall, S.C., Long-term effects of simulated microgravity and vibration exposure on skeletal development in zebrafish, Stem Cells Dev., 2018, vol. 27, no. 18, pp. 1278–1286. https://doi.org/10.1089/scd.2017.0266

    Article  CAS  PubMed  Google Scholar 

  4. Kosmicheskaya meditsina i biologiya (Space Medicine and Biology), Grigor’ev, A.I. and Ushakov, I.B., Eds., Voronezh, 2013.

  5. Von Baumgarten, R.J., Simmonds, R.C., Boyd, J.F., and Garriott, O.K., Effects of prolonged weightlessness on the swimming pattern of fish aboard “Skylab-3,” Aviat., Space Environ. Med., 1975, vol. 46, no. 7, pp. 902–906.

    CAS  Google Scholar 

  6. Fischer, J. and Laforsch, C., The influence of gravity and light on locomotion and orientation of Heterocypris incongruens and Notodromas monacha (Crustacea, Ostracoda), NPJ Microgravity, 2018, vol. 4, p. 3. https://doi.org/10.1038/s41526-017-0037-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ogneva, I.V., Belyakin, S.N., and Sarantseva, S.V., The development of Drosophila melanogaster under different duration space flight and subsequent adaptation to earth gravity, PLoS One, 2016, vol. 11, no. 11, p. e0166885. https://doi.org/10.1371/journal.pone.0166885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fermin, C.D., Martin, D., Jones, T., et al., Microgravity in the STS-29 space shuttle discovery affected the vestibular system of chick embryons, Histol. Histopathol., 1996, vol. 11, pp. 407–426.

    CAS  PubMed  Google Scholar 

  9. Kenion, R.V., Kerschmann, R., Sgarioto, R., et al., Normal vestibular function in chicks after partial exposure to microgravity during development, J. Vestibular Res., 1995, vol. 5, pp. 289–298.

    Google Scholar 

  10. Serova, L.V., Ol’berts, Dzh., and Apanasenko, Z.I., Growth and development of rats during their first month of life, in Ontogenez mlekopitayushchikh v nevesomosti (Ontogenesis of Mammals in Weightlessness), Gazenko, O.G., Ed., Moscow, 1988, pp. 82–88.

  11. Steller, J.G., Alberts, J.R., and Ronca, A.E., Oxidative stress as cause, consequence, or biomarker of altered female reproduction and development in the space environment, Int. J. Mol. Sci., 2018, vol. 19, pp. 3729–3755. https://doi.org/10.3390/ijms19123729

    Article  CAS  PubMed Central  Google Scholar 

  12. Ronca, A.E., Fritzsch, B., Bruce, L.L., and Alberts, J.R., Orbital spaceflight during pregnancy shapes function of mammalian vestibular system, Behav. Neurosci., 2008, vol. 122, pp. 224–232.

    PubMed  PubMed Central  Google Scholar 

  13. Ogneva, I.V., Usik, M.A., Loktev, S.S., et al., Testes and duct deferens of mice during space flight: cytoskeleton structure, sperm-specific proteins and epigenetic events, Sci. Rep., 2019, vol. 9, no. 1, p. 9730. https://doi.org/10.1038/s41598-019-46324-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bershtein, N.A., The dexterity and its development, in Fizkul’tura i sport (Physical Training and Sports), Moscow, 1991.

    Google Scholar 

  15. Oganov, V.S., Study of skeleton gravitational physiology and problem of osteoporosis, Russ. J. Physiol., 2003, vol. 89, no. 3, pp. 347–355.

    CAS  Google Scholar 

  16. Shnol’, S.E., Fiziko-khimicheskie factory biologicheskoi evolyutsii (Physical and Chemical Factors of Biological Evolution), Moscow, 2013.

    Google Scholar 

  17. Gurfinkel’, V.S., Kots, Ya.M., and Shik, M.L., Regulyatsiya pozy cheloveka (Regulation of Human Pose), Moscow, 1965.

  18. Smits, A.W., Fluid balance in vertebrate lungs, in Comparative Pulmonary Physiology Current Concepts, Wood, S.C., Ed., New York: Marcel Dekker, 1989, pp. 503–537.

    Google Scholar 

  19. Lillywhite, H.B., Cardiovascular adaptations to gravity: Lessons from comparative studies of snakes, in Adaptation Biology and Medicine, Vol. 4: Current Concepts, Hargens, A., Takeda, N., and Singal, P.K., Eds., New Delhi, 2005, pp. 68–81.

  20. Brondum, E., Hasenkam, J.M., Secher, N.H., et al., Jugular venous pooling during lowering of the head affects blood pressure of the anesthetized giraffe, Am. J. Physiol.: Regul. Integr. Comp. Physiol., 2009, vol. 297, no. 4, pp. R1058–R1065.

    CAS  Google Scholar 

  21. Pace, N., Rahlmann, D.F., and Smith, A.H., Scaling of metabolic rate on body mass in small laboratory mammals, J. Gravitational Physiol., 1981, vol. 19, pp. 213–216.

    Google Scholar 

  22. Andreev-Andrievskiy, A.A., Popova, A.S., Lagereva, E.A., et al., Fluid shift versus body size: changes of hematological parameters and body fluid volume in hindlimb-unloaded mice, rats and rabbits, J. Exp. Biol., 2018, vol. 221, art. ID jeb182832. https://doi.org/10.1242/jeb.182832

    Article  PubMed  Google Scholar 

  23. Buravkova, L.B., Mekhanizmy kletochnoi gravichuvstvitel’nosti (Mechanisms of Cellular Gravity Sensitivity), Moscow, 2018.

  24. Otelin, A.A., Mirkin, A.S., and Mashchanskii, V.F., Tel’tsa FateraPahcini. Strukturno-funktsional’nye osobennosti (Fatter–Pacini Corpuscles: Structural and Functional Peculiarities), Leningrad, 1976.

  25. Perrier, J.-F., D’Incamps, B.L., Kouchtir-Devan-ne, N., et al., Cooperation of muscle and cutaneous afferents in the feedback of contraction to peroneal motoneurons, J. Neurophysiol., 2000, vol. 83, pp. 3201–3208.

    CAS  PubMed  Google Scholar 

  26. Roll, R., Kavounoudias, A., and Roll, J.P., Cutaneous afferents from human plantar sole contribute to body posture awareness, Neuroreport, 2002, vol. 13, no. 15, pp. 1957–1961.

    PubMed  Google Scholar 

  27. Shenkman, B.S. and Kozlovskaya, I.B., Cellular responses of human postural muscle to dry immersion, Front. Physiol., 2019, vol. 10, p. 187. https://doi.org/10.3389/fphys.2019.00187

    Article  PubMed  PubMed Central  Google Scholar 

  28. Morita, H., Kaji, H., Ueta, Y., and Abe, Ch., Understanding vestibular-related physiological functions could provide clues on adapting to a new gravitational environment, J. Physiol. Sci., 2020, vol. 70, no. 17. https://doi.org/10.1186/s12576-020-00744-3

  29. Barnes, G.R., The role of vestibular system in head-eye coordination, J. Physiol. (London), 1975, vol. 246, no. 2, p. 99.

    Google Scholar 

  30. Shul’zhenko, E.B. and Vil’-Vil’ams, I.F., The possibility of long term water immersion by the “dry” immersion method, Kosm. Biol. Aviakosm. Med., 1976, no. 10, pp. 82–84.

  31. Navasiolava, N.M., Custaud, M.-A., Tomilovskaya, E.S., et al., Long-term dry immersion: review and prospects, Eur. J. Appl. Physiol., 2011, vol. 111, pp. 1235–1260. https://doi.org/10.1007/s00421-010-1750-x

    Article  CAS  PubMed  Google Scholar 

  32. Tomilovskaya, E., Shigueva, T., Sayenko, D., et al., Dry immersion as a ground-based model of microgravity physiological effects, Front. Physiol., 2019, vol. 10, p. 284. https://doi.org/10.3389/fphys.2019.00284

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kakurin, L.I., Lobachik, V.I., Mikhailov, V.M., and Senkevich, Y.A., Antiorthostatic hypokinesia as a method of weightlessness simulation, Aviat., Space Environ. Med., 1976, vol. 47, pp. 1083–1086.

    CAS  Google Scholar 

  34. Godichnaya antiortostaticheskaya gipokineziya (ANOG)—fiziologicheskaya model’ mezhplanetarnogo kosmicheskogo poleta: Monografiya (One-Year Antiorthostatic Hypokinesia (ANOG): Physiological Model of Interplanetary Space Flight: Monograph), Grigor’ev, A.I. and Kozlovskaya, I.B., Eds., Moscow, 2018.

  35. Hackney, K.J. and Ploutz-Snyder, L.L., Unilateral lower limb suspension: integrative physiological knowledge from the past 20 years (1991–2011), Eur. J. Appl. Physiol., 2011, vol. 112, pp. 9–22. https://doi.org/10.1007/s00421-011-1971-7

    Article  PubMed  Google Scholar 

  36. Il’ina-Kakueva, E.I. and Novikov, V.E., Skeletal muscles of rats under conditions of physiological effects of weightlessness simulation, Kosm. Biol. Aviakosm. Med., 1985, vol. 19, no. 3, pp. 56–60.

    PubMed  Google Scholar 

  37. Globus, R.K. and Morey-Holton, E., Hindlimb unloading: rodent analog for microgravity, J. Appl. Physiol., 2016, vol. 120, vol. 1196–1206. https://doi.org/10.1152/japplphysiol.00997.2015

  38. Shigueva, T.A., Zakirova, A.Z., Tomilovskaya, E.S., and Kozlovskaya, I.B., Effects of support unloading on recruitment order of motor units, Aviakosm. Ekol. Med., 2013, vol. 47, no. 2, pp. 50–53.

    CAS  Google Scholar 

  39. Roy, R., Hodgson, J.A., Aragon, J., et al., Recruitment of the Rhesus soleus and medial gasrocnemius before, during and after spaceflight, J. Gravitational Physiol., 1996, vol. 3, no. 1, pp. 11–16.

    CAS  Google Scholar 

  40. Zhang, L.-F., Vascular adaptation to microgravity: what have we learned? J. Appl. Physiol., 2001, vol. 91, pp. 2415–2430.

    CAS  PubMed  Google Scholar 

  41. Zhang, L.-F., Region-specific vascular remodeling and its prevention by artificial gravity in weightless environment, Eur. J. Appl. Physiol., 2013, vol. 113, pp. 2873–2895. https://doi.org/10.1007/s00421-013-2597-8

    Article  PubMed  Google Scholar 

  42. Colleran, P.N., Wilkerson, M.K., Bloomfield, S.A., et al., Alterations in skeletal perfusion with simulated microgravity: a possible mechanism for bone remodeling, J. Appl. Physiol., 2000, vol. 89, pp. 1046–1054.

    CAS  PubMed  Google Scholar 

  43. Taylor, C.R., Hanna, M., Behnke, B.J., et al., Spaceflight-induced alterations in cerebral artery vasoconstrictor, mechanical, and structural properties: implications for elevated cerebral perfusion and intracranial pressure, FASEB J., 2013, vol. 27, pp. 2282–2292.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sofronova, S.I., Tarasova, O.S., Gaynullina, D., et al., Spaceflight on the Bion-M1 biosatellite alters cerebral vasomotor and mechanical properties in mice, J. Appl. Physiol., 2015, vol. 118, no. 7, pp. 830–838.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Arbeille, P., Fomina, G., Roumy, J., et al., Adaptation of the left heart, cerebral and femoral arteries, and jugular and femoral veins during short- and long-term head-down tilt and spaceflights, Eur. J. Appl. Physiol., 2001, vol. 86, pp. 157–168.

    CAS  PubMed  Google Scholar 

  46. Wilkerson, M.K., Lesniewski, L.A., Golding, E.M., et al., Simulated microgravity enhances cerebral artery vasoconstriction and vascular resistance through endothelial nitric oxide mechanism, Am. J. Physiol.: Heart Circ. Physiol., 2005, vol. 288, pp. H1652–H1661.

    CAS  Google Scholar 

  47. Iwasaki, K.I., Levine, B.D., Zhang, R., et al., Human cerebral autoregulation before, during and after spaceflight, J. Physiol., 2007, vol. 579, pp. 799–810.

    CAS  PubMed  Google Scholar 

  48. Zhang, R., Zuckerman, J.H., Pawelczyk, J.A., and Levine, B.D., Effects of head-down-tilt bed rest on cerebral hemodynamics during orthostatic stress, J. Appl. Physiol., 1997, vol. 83, pp. 2139–2145.

    CAS  PubMed  Google Scholar 

  49. Wilkerson, M.K., Muller-Delp, J., Colleran, P.N., and Delp, M.D., Effects of hindlimb unloading on rat cerebral, splenic, and mesenteric resistance artery morphology, J. Appl. Physiol., 1999, vol. 87, pp. 2115–2121. https://doi.org/10.1152/jappl.1999.87.6.2115

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, L.-F. and Hargens, A.R., Spaceflight-induced intracranial hypertension and visual impairment: pathophysiology and countermeasures, Physiol. Rev., 2018, vol. 98, no. 1, pp. 59–87. https://doi.org/10.1152/physrev.00017.2016

    Article  PubMed  Google Scholar 

  51. Kozlovskaya, I.B., Sayenko, I.V., Miller, T.F., et al., Erratum to: New approaches to countermeasures of the negative effects of microgravity in long-term space flights [ActaAstronautica 59 (2006) 13–19], Acta Astronaut., 2007, vol. 60, no. 8, pp. 783–789.

    Google Scholar 

  52. Oganov, V.S. and Grigor’ev, A.I., The mechanisms of osteopenia and specific metabolism of human bone tissue in weightless conditions, Ross. Fiziol. Zh. im. I.M. Sechenova, 2012, vol. 98, no. 3, pp. 395–409.

    CAS  PubMed  Google Scholar 

  53. Vico, L. and Hargens, A., Skeletal changes during and after spaceflight, Nat. Rev. Rheumatol., 2018, vol. 14, no. 4, pp. 229–245.

    PubMed  Google Scholar 

  54. Norsk, P., Cardiovascular and fluid volume control in humans in space, Curr. Pharm. Biotechnol., 2005, vol. 4, pp. 325–330.

    Google Scholar 

  55. Gazenko, O.G., Grigor’ev, A.I., and Natochin, Yu.V., Water-salt balance homeostasis and space flight, in Problemy kosmicheskoi biologii (Problems of Space Biology), Moscow, 1986, vol. 54.

  56. Hargens, A.R. and Vico, L., Long-duration bed rest as an analog to microgravity, J. Appl. Physiol., 2016, vol. 120, pp. 891–903.

    PubMed  Google Scholar 

  57. Cao, P., Kimura, S., Macias, B., et al., Exercise within lower body negative pressure partially counteracts lumbar spine deconditioning associated with 28-day bed rest, J. Appl. Physiol., 2005, vol. 99, pp. 39–44.

    PubMed  Google Scholar 

  58. Sayson, J.V., Lotz, J., Parazynski, S., and Hargens, A.R., Back pain in space and post-flight spine injury: mechanisms and countermeasure development, Acta Astronaut., 2013, vol. 86, pp. 24–38.

    Google Scholar 

  59. Johnston, S.L., Campbell, M.R., Scheuring, R., and Feiveson, A.H., Risk of herniated nucleus pulposus among U.S. astronauts, Aviat., Space Environ. Med., 2010, vol. 81, no. 6, pp. 566–574.

    Google Scholar 

  60. Rukavishnikov, I.V., Amirova, L.E., Kukoba, T.B., et al., Effects of gravitational unloading on back muscles tone, Hum. Physiol., 2017, vol. 43, no. 3, pp. 291–300.

    Google Scholar 

  61. Kozlovskaya, I.B. and Kirenskaya, A.V., Mechanisms of disorders of the characteristics of fine movements in long term hypokinesia, Neurosci. Behav. Physiol., 2004, vol. 34, no. 7, pp. 747.

    CAS  PubMed  Google Scholar 

  62. Shenkman, B.S., Nemirovskaya, T.L., Cheglova, I.A., et al., Morphological characteristics of human m. vastuslateralis under supportlessness environment, Dokl. Ross. Akad. Nauk, 1999, vol. 364, no. 4, pp. 563–565.

    CAS  Google Scholar 

  63. Shenkman, B.S., From slow to fast: hypogravity-induced remodeling of muscle fiber myosin phenotype, Acta Nat., 2016, vol. 8, no. 4, pp. 47–59.

    CAS  Google Scholar 

  64. Atomi, Y., Gravitational effects on human physiology, in High Pressure Bioscience: Basic Concepts, Applications and Frontiers, Subcellular Biochemistry Series, vol. 72, Dordrecht: Springer-Verlag, 2015, pp. 627–659. https://doi.org/10.1007/978-94-017-9918-8_29

  65. Roy, R., Roy, M., Talmadge, R., et al., Size and myosin heavy chain profiles of rat hindlimb extensor muscle fibers after 2 weeks at 2 G, Aviat., Space Environ. Med., 1996, vol. 67, no. 9, pp. 854–858.

    CAS  Google Scholar 

  66. Tavakol, M., Roy, R., Kim, J.A., et al., Fiber size, type, and myosin heavy chain content in rhesus hindlimb muscles after 2 weeks at 2 G, Aviat., Space Environ. Med., 2002, vol. 73, no. 6, pp. 551–557.

    CAS  Google Scholar 

  67. Kawao, N., Morita, H., Obata, K., et al., The vestibular system is critical for the changes in muscle and bone induced by hypergravity in mice, Physiol. Rep., 2016, vol. 4, no. 19, p. e12979. https://doi.org/10.14814/phy2.12979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mirzoev, T., Tyganov, S., Petrova, I., et al., Divergent anabolic signalling responses of murine soleus and tibialis anterior muscles to chronic 2 G hypergravity, Sci. Rep., 2017, vol. 7, pp. 3514. https://doi.org/10.1038/s41598-017-03758-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tomilovskaya, E.S., Berger, M., Gerstenbrand, F., and Kozlovskaya, I.B., Effects of long-duration space flights on characteristics of the vertical gaze fixation reaction, J. Vestibular Res., 2013, vol. 23, no. 1. https://doi.org/10.3233/VES-130470

  70. Krasnov, I.B. and Krasnikov, G.V., Purkinje cells of the vestibular and proprioceptive parts of the rat cerebellum after a 14-day space flight, Aviakosm. Ekol. Med., 2009, vol. 43, no. 4, pp. 43–47.

    CAS  Google Scholar 

  71. Badakva, A.M., Miller, N.V., and Eron, Yu.N., Effects of water immersion on reaction of gaze fixation in monkeys, Aviakosm. Ekol. Med., 2007, vol. 41, no. 2, pp. 49–53.

    CAS  Google Scholar 

  72. Guillaud, E., Faure, C., Doat, E., et al., Ancestral persistence of vestibulospinal reflexes in axial muscles in humans, J. Neurophysiol., 2020, vol. 123, no. 5, pp. 2010–2023.

    PubMed  Google Scholar 

  73. Roberts, D.R., et al., Effects of spaceflight on astronaut brain structure as indicated on MRI, N. Engl. J. Med., 2017, vol. 377, pp. 1746–1753.

    PubMed  Google Scholar 

  74. van Ombergen, A., Jillings, S., Jeurissen, B., et al., Brain ventricular volume changes induced by long-duration spaceflight, Proc. Natl. Acad. Sci. U.S.A., 2019, vol. 116, no. 21, pp. 10531–10536.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Pechenkova, E., Nosikova, I., Rumshiskaya, A., et al., Alterations of functional brain connectivity after long-duration spaceflight as revealed by fMRI, Front. Physiol., 2019, vol. 10, p. 761. https://doi.org/10.3389/fphys.2019.00761

    Article  PubMed  PubMed Central  Google Scholar 

  76. Aseyev, N., Vinarskaya, A., Roshchin, M., et al., Adaptive changes in the vestibular system of land snail to a 30-day spaceflight and readaptation on return to Earth, Front. Cell. Neurosci., 2017, vol. 11, p. 348. https://doi.org/10.3389/fncel.2017.00348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mann, V., Sundaresan, A., and Chaganti, M., Cellular changes in the nervous system when exposed to gravitational variation, Neurology, 2019, vol. 67, no. 3, pp. 684–691. https://doi.org/10.4103/0028-3886.263169

    Article  Google Scholar 

  78. Popova, N.K., Kulikov, A.V., Kondaurova, E.M., et al., Risk neurogenes for long-term spaceflight: dopamine and serotonin brain system, Mol. Neurobiol., 2015, vol. 51, no. 3, pp. 1443–1451.

    CAS  PubMed  Google Scholar 

  79. Naumenko, V.S., Kulikov, A.V., Kondaurova, E.M., et al., Effect of actual long-term spaceflight on BDNF, TrkB, p75, BAX and BCL-XL genes expression in mouse brain regions, Neuroscience, 2014, vol. 284, pp. 730–736.

    PubMed  Google Scholar 

  80. Turchaninova, V.F., Egorov, A.D., and Domrachev, M.V., Central and regional hemodynamics in long space flights, Kosm. Biol. Aviakosm. Med., 1989, vol. 23, pp. 19–26.

    CAS  PubMed  Google Scholar 

  81. Sandler, H., Krotov, V.P., Hines, J., et al., Cardiovascular results from a rhesus monkey flown aboard the Cosmos 1514 spaceflight, Aviat., Space Environ. Med., 1987, vol. 58, pp. 529–536.

    CAS  Google Scholar 

  82. Blaber, A.P., Goswami, N., Bondar, R.L., et al., Impairment of cerebral blood flow regulation in astronauts with orthostatic intolerance after flight, Stroke, 2011, vol. 42, pp. 1844–1850.

    PubMed  Google Scholar 

  83. Zuj, K.A., Arbeille, P., Shoemaker, J.K., et al., Impaired cerebrovascular autoregulation and reduced CO2 reactivity after long duration spaceflight, Am. J. Physiol.: Heart Circ. Physiol., 2012, vol. 302, pp. H2592–H2598.

    CAS  Google Scholar 

  84. Peters, B.T., Miller, C.A., Brady, R.A., et al., Dynamic visual acuity during walking after long-duration spaceflight, Aviat., Space Environ. Med., 2011, vol. 82, no. 4, pp. 463–466.

    Google Scholar 

  85. Danilichev, S.N., Pronin, S.V., Shelepin, Yu.E., et al., Optical and psychophysical studies of the visual system of cosmonauts before and after long orbital flights, J. Opt. Technol., 2019, vol. 86, no. 11, pp. 691–696. https://doi.org/10.1364/JOT.86.000691

    Article  Google Scholar 

  86. Mader, T.H., Gibson, C.R., Pass, A.F., et al., Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight, Ophthalmology, 2011, vol. 118, p. 2058–2069. https://doi.org/10.1016/j.ophtha.2011.06.021

    Article  PubMed  Google Scholar 

  87. Bogomolov, V.V., Kuzmin, M.P., and Danilichev, S.N., Intracranial hypertension in astronauts in the conditions of long-term microgravity, Aviakosm. Ekol. Med., 2015, vol. 49, no. 4, pp. 54–58.

    CAS  Google Scholar 

  88. Marshall-Goebel, K., Laurie, S.S., Alferova, I.V., et al., Assessment of jugular venous blood flow stasis and thrombosis during spaceflight, JAMA Network Open, 2019, vol. 2, no. 11, p. e1915011. https://doi.org/10.1001/jamanetworkopen.2019.15011

    Article  PubMed  PubMed Central  Google Scholar 

  89. Norsk, P., Role of arginine vasopressin in the regulation of extracellular fluid volume, Med. Sci. Sports Exercise, 1996, vol. 28, no. 10, suppl., pp. S36–S41.

    CAS  Google Scholar 

  90. Videbaek, R. and Norsk, P., Atrial distension in humans during microgravity induced by parabolic flights, J. Appl. Physiol., 1997, vol. 83, pp. 1862–1866.

    CAS  PubMed  Google Scholar 

  91. Buckey, J.C., Jr., Gaffne, F.A., Lane, L.D., et al., Central venous pressure in space., J. Appl. Physiol., 1996, vol. 81, pp. 9–25.

    Google Scholar 

  92. Norsk, P., Asmar, A., Damgaard, M., and Christensen, N.J., Fluid shifts, vasodilatation and ambulatory blood pressure reduction during long duration spaceflight, J. Physiol., 2015, vol. 593, no. 3, pp. 573–584.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Shiraishi, M., Schou, M., Gybel, M., et al., Comparison of acute cardiovascular responses to water immersion and head-down tilt in humans, J. Appl. Physiol., 2002, vol. 92, pp. 264–268.

    PubMed  Google Scholar 

  94. Amirova, L.E., Navasiolava, N.M., Rukavishvikov, I.V., et al., Cardiovascular system under simulated weightlessness: head-down bed rest vs. dry immersion, Front. Phys-iol., 2020, vol. 11, pp. 395. https://doi.org/10.3389/fphys.2020.00395

    Article  Google Scholar 

  95. Huntoon, C., Human physiology in microgravity: spacelab SLS-1 metabolic results, Proc. FASEB Meeting, Anaheim, CA, 1992.

  96. Fortney, S.M., Hyatt, K.H., Davis, J.E., and Vogel, J.M., Changes in body fluid compartments during a 28-day bed rest, Aviat., Space Environ. Med., 1991, vol. 62, pp. 97–104.

    CAS  Google Scholar 

  97. Gazenko, O.G. and Ilyin, E.A., Physiological investigations of primates onboard biosatellites Cosmos-1514 and Cosmos-1667, Physiologist, 1987, vol. 30, pp. S31–S35.

    CAS  PubMed  Google Scholar 

  98. Deever, D.B., Young, R.S., Wang, S., et al., Changes in organ perfusion and weight ratios in post-simulated microgravity recovery, Acta Astronaut., 2002, vol. 50, pp. 445–452.

    PubMed  Google Scholar 

  99. Tarasova, O.S., Kalenchuk, V.U., Borovik, A.S., et al., Simulated microgravity induces regionally distinct neurovascular and structural remodeling of skeletal muscle and cutaneous arteries in the rat, Front. Physiol., 2020, vol. 11, pp. 675. https://doi.org/10.3389/fphys.2020.00675

    Article  PubMed  PubMed Central  Google Scholar 

  100. Behnke, B.J., Stabley, J.N., McCullough, D.J., et al., Effects of spaceflight and ground recovery on mesenteric artery and vein constrictor properties in mice, FASEB J., 2013, vol. 27, pp. 399–409.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Fritsch-Yelle, J.M., Charles, J.B., Jones, M.M., and Wood, M.L., Microgravity decreases heart rate and arterial pressure in humans, J. Appl. Physiol., 1996, vol. 80, no. 3, pp. 910–914.

    CAS  PubMed  Google Scholar 

  102. Perhonen, M.A., Franco, F., Lane, L.D., et al., Cardiac atrophy after bed rest and spaceflight, J. Appl. Physiol., 2001, vol. 91, pp. 645–653.

    CAS  PubMed  Google Scholar 

  103. Henry, W.L., Epstein, S.E., Griffith, J.M., et al., Effect of prolonged space flight on cardiac functions and dimensions, in Biomedical Results from Skylab, Washington, DC: Natl. Aeronaut. Space Adm., 1977, pp. 366–371.

    Google Scholar 

  104. Atkov, O., Bednenko, V.S., and Fomina, G.A., Ultrasound techniques in space medicine, Aviat., Space Environ. Med., 1987, vol. 58, pp. A69–A73.

    Google Scholar 

  105. Hughson, R.L., Shoemaker, J.H., Blaber, A.P., et al., Cardiovascular regulation during long-duration spaceflights to the International Space Station, J. Appl. Physiol., 2012, vol. 112, pp. 719–727.

    CAS  PubMed  Google Scholar 

  106. Baevsky, R.M., Baranov, V.M., Funtova, I.I., et al., Autonomic cardiovascular and respiratory control during prolonged spaceflights aboard the International Space Station, J. Appl. Physiol., 2007, vol. 103, pp. 156–161.

    PubMed  Google Scholar 

  107. Eckberg, D.L., Halliwill, J.R., Beigthol, L.A., et al., Human vagal baroreflex mechanisms in space, J. Physiol., 2010, vol. 588, pp. 1129–1138.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Borovik, A.S., Orlova, E.A., Tomilovskaya, E.S., et al., Phase coupling between baroreflex oscillations of blood pressure and heart rate changes in 21-day dry immersion, Front. Physiol., 2020, vol. 11, pp. 455. https://doi.org/10.3389/fphys.2020.00455

    Article  PubMed  PubMed Central  Google Scholar 

  109. Iwase, S., Sugiyama, Y., Miwa, C., et al., Effects of three days dry immersion on muscle sympathetic activity and arterial blood pressure in humans, J. Auton. Nerv. Syst., 2000, vol. 79, nos. 2–3, pp. 156–164.

    CAS  PubMed  Google Scholar 

  110. Kamiya, A., Iwase, S., Kitazawa, H., et al., Baroreflex control of muscle sympathetic nerve activity after 120 days of 6° head-down bed rest, Am. J. Physiol.: Regul., Integr. Comp. Physiol., 2000, vol. 278, pp. R445–R452.

    CAS  Google Scholar 

  111. Ertl, A.C., Diedrich, A., Biaggioni, I., et al., Human muscle sympathetic nerve activity and plasma noradrenaline kinetics in space, J. Physiol., 2002, vol. 538, pp. 321–329.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Mano, T., Iwase, S., and Toma, S., Microneurography as a tool in clinical neurophysiology to investigate peripheral neural traffic in humans, Clin. Neurophysiol., 2006, vol. 117, no. 11, pp. 2357–2384.

    PubMed  Google Scholar 

  113. Miwa, C., Mano, T., Saito, M., et al., Aging reduces sympatho-suppressive response to head-out water immersion in humans, Acta Physiol. Scand., 1999, vol. 158, no. 1, pp. 15–20.

    Google Scholar 

  114. Iwase, S., Mano, T., Cui, J., et al., Sympathetic outflow to muscle in humans during short periods of microgravity produced by parabolic flight, Am. J. Physiol.: Regul., Integr. Comp. Physiol., 1999, vol. 277, pp. R419–R426.

    CAS  Google Scholar 

  115. Thornton, W.E., Hoffler, G.W., and Rummel, J.A., Anthropometric changes and fluid shifts, in Biomedical Results from Skylab, Johnston, R.S. and Dietlein, L.F., Eds., Washington, DC: Natl. Aeronaut. Space Adm., 1977, vol. 377, pp. 330–338.

    Google Scholar 

  116. Convertino, V.A., Doerr, D.F., Mathes, K.L., et al., Changes in volume, muscle compartment, and compliance of the lower extremities in man following 30 days of exposure to simulated microgravity, Aviat., Space Environ. Med., 1989, vol. 60, no. 7, pp. 653–658.

    CAS  Google Scholar 

  117. Herault, S., Fomina, G., Alferova, I., et al., Cardiac, arterial and venous adaptation to weightlessness during 6-month “Mir” spaceflights with and without thigh cuffs (bracelets), Eur. J. Appl. Physiol., 2000, vol. 81, pp. 384–390.

    CAS  PubMed  Google Scholar 

  118. Kozlovskaya, I.B., Yarmanova, E.N., Yegorov, A.D., et al., Russian countermeasure systems for adverse effects of microgravity on long-duration ISS flights, Aerospace Med., Hum. Perform., 2015, vol. 86, suppl. 1, pp. 24–31.

    Google Scholar 

  119. Meyer, T., Kindermann, M., and Kindermann, W., Exercise programs for patients with chronic heart failure, Sports Med., 2004, vol. 34, no. 14, pp. 939–954.

    PubMed  Google Scholar 

  120. Watkins, W., Hargens, A.R., Seidl, S., et al., Lower-body negative pressure decreases noninvasively measured intracranial pressure and internal jugular vein cross-sectional area during head-down tilt, J. Appl. Physiol., 2017, vol. 123, no. 1, pp. 260–266.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Kotovskaya, A.R., Vil’-Vil’yams, I.F., and Luk”yanyuk, V.Yu., The creation of artificial gravity using a short radius centrifuge for medical support of interplanetary manned flights, Aviakosm. Ekol. Med., 2003, vol. 37, no. 5, pp. 36–40.

    Google Scholar 

  122. Semenova, K.A., Vosstanovitel’noe lechenie detei s perinatal’nym porazheniem nervnoi sistemy i s detskim tserebral’nym paralichom (Rehabilitation of Children with Perinatal Damage to the Nervous System and Cerebral Palsy), Moscow, 2007.

  123. Saenko, I.V., Chernikova, L.A., and Kozlovskaya, I.B., Space technologies in neurorehabilitation, in Vosstanovitel’naya nevrologiya: innovatisonnye tekhnologii v neiroreabilitatsii (Reconstructive Neurology: Innovative Technologies in Neurorehabilitation), Cherniko-va, L.A., Ed., Moscow, 2016, pp. 294–330.

  124. Poltavskaya, M.G., Sviridenko, V.P., Kozlov-skaya, I.B., et al., Comparison of the efficacy of neuromuscular electrostimulation and interval exercise training in early rehabilitation of patients hospitalized with decompensation of chronic heart failure, Hum. Physiol., 2018, vol. 44, no. 6, pp. 663–672.

    Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-115-50 259).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. L. Vinogradova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

This work does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinogradova, O.L., Tomilovskaya, E.S. & Kozlovskaya, I.B. Gravity as a Factor in Evolutionary Adaptation of Animals to Living on the Earth. Hum Physiol 47, 716–734 (2021). https://doi.org/10.1134/S0362119721070124

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119721070124

Keywords:

Navigation