Skip to main content
Log in

Visuomotor synchronization in adults and seven- to eight-year-old children

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

A group of 22 seven- to eight-year-old children and a group of 17 adults participated in the experiment in which they synchronized their movements (pressing a button) with an isochronous sequence of visual stimuli. The period of the sequence was varied between 500 to 2000 ms at a step of 300 ms. Two consecutive phases of visuomotor synchronization were studied: the initiation phase, which corresponds to the process of transition between responding to a visual stimulus to stable synchronization with them, and the synchronization phase. The initiation phase was characterized by the shape and duration of the asynchrony time course (relaxation curve). The statistical properties of asynchrony were analyzed in terms of the phase correction of the central timer. It was shown that (1) the range of successful visuomotor synchronization was narrower in seven- to eight-year-old children than in adults (from 600–700 ms to ∼1700 ms); (2) the initiation phase duration was about the same in seven- to eight-year-old children and adults, and typical shapes of individual relaxation curves were similar in both adults and children; (3) although the statistical properties of asynchrony were comparable in children and adults, the mechanism of phase correction of the central timer operated at a lower correction gain factor in children than in adults. In children, the phase correction process was also characterized by a substantially higher level of the central and motor noise, which leads to higher asynchrony variability and more frequent and longer synchronization losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schutz-Bosbach, S. and Prinz, W., Prospective Coding in Event Representation, Cogn. Process., 2007, vol. 8, p. 93.

    Article  PubMed  Google Scholar 

  2. Ghajar, J. and Ivry, R.B., The Predictive Brain State: Asynchrony in Disorders of Attention?, Neuroscientist, 2009, vol. 15, no. 3, p. 232.

    Article  PubMed  Google Scholar 

  3. Wing, A.M. and Kristofferson, A.B., Response Delays and the Timing of Discrete Motor Responses, Percept. Psychophys., 1973, vol. 14, p. 5.

    Article  Google Scholar 

  4. Ivry, R.B. and Richardson, T.C., Temporal Control and Coordination: The Multiple Timer Model, Brain Cogn., 2002, vol. 48, p. 117.

    Article  PubMed  Google Scholar 

  5. Semjen, A., Schulze, H.-H., and Vorberg, D., Timing Precision in Continuation and Synchronization Tapping, Psychol. Res., 2000, vol. 63, p. 137.

    Article  PubMed  CAS  Google Scholar 

  6. Aschersleben, G., Temporal Control of Movements in Sensorimotor Synchronization, Brain Cogn., 2002, vol. 48, p. 66.

    Article  PubMed  Google Scholar 

  7. Thaut, M.H., Miller, R.A., and Schauer, L.M., Multiple Synchronization Strategies in Rhythmic Sensorimotor Tasks: Phase vs Period Correction, Biol. Cybern., 1998, vol. 79, p. 241.

    Article  PubMed  CAS  Google Scholar 

  8. Praamstra, P., Turgeon, M., Hesse, C.W., et al., Neurophysiological Correlates of Error Correction in Sensorimotor-Synchronization, NeuroImage, 2003, vol. 20, p. 1283.

    Article  PubMed  CAS  Google Scholar 

  9. Repp, B.H., Phase Correction, Phase Resetting, and Phase Shifts after Subliminal Timing Perturbations in Sensorimotor Synchronization, J. Exp. Psychol. Hum. Percept. Perform., 2001, vol. 27, no. 3, p. 600.

    Article  PubMed  CAS  Google Scholar 

  10. Repp, B.H., Sensorimotor Synchronization: A Review of the Tapping Literature, Psychon. Bull. Rev., 2005, vol. 12, no. 6, p. 969.

    Article  PubMed  Google Scholar 

  11. Repp, B.H., Rate Limits of Sensorimotor Synchronization, Adv. Cogn. Psychol., 2006, vol. 2, nos. 2–3, p. 163.

    Article  Google Scholar 

  12. McAuley, J.D., Jones, M.R., Holub, S., et al., The Time of Our Lives: Life Span Development of Timing and Event Tracking, J. Experim. Psychol. Gen., 2006, vol. 135, no. 3, p. 348.

    Article  Google Scholar 

  13. Kurganskii, A.V., Visuomotor Synchronization: Analysis of the Synchronization Initiation and Stability Phases, Fiziol. Chel., 2008, vol. 34, no. 3, p. 30.

    CAS  Google Scholar 

  14. Wing, A.M., Voluntary Timing and Brain Function: An Information Processing Approach, Brain Cogn., 2002, vol. 48, p. 7.

    Article  PubMed  Google Scholar 

  15. Lewis, P.A., Wing, A.M., Pope, P.A., et al., Brain Activity Correlates Differentially with Increasing Temporal Complexity of Rhythms during Initialisation, Synchronisation, and Continuation Phases of Paced Finger Tapping, Neuropsychologia, 2004, vol. 42, p. 1301.

    Article  PubMed  CAS  Google Scholar 

  16. Volman, M.J.M. and Geuze, R.H., Temporal Stability of Rhythmic Tapping “on” and “off” the Beat: A Developmental Study, Psychol. Res., 2000, vol. 63, p. 62.

    Article  PubMed  CAS  Google Scholar 

  17. Drake, C., Jones, M.R., and Baruch, C., The Development of Rhythmic Attending in Auditory Sequences: Attunement, Referent Period, Focal Attending, Cognition, 2000, vol. 77, p. 251.

    Article  PubMed  CAS  Google Scholar 

  18. Drewing, K., Aschersleben, G., and Li, S.-C., Sensorimotor Synchronization across the Life Span, Int. J. Behav. Dev., 2006, vol. 30, no. 3, p. 280.

    Article  Google Scholar 

  19. Bartlett, N.R. and Bartlett, S.C., Synchronization of a Motor Response with an Anticipated Sensory Event, Psychol. Rev., 1959, vol. 66, p. 203.

    Article  PubMed  CAS  Google Scholar 

  20. Schulze, H.-H., Cordes, A., and Vorberg, D., Keeping Synchrony while Tempo Changes: Accelerando and Ritardando, Music Percept., 2005, vol. 22, no. 3, p. 461.

    Article  Google Scholar 

  21. Repp, B., Rate Limits in Sensorimotor Synchronization with Auditory and Visual Sequences: The Synchronization Threshold and the Benefits and Costs of Interval Subdivision, J. Mot. Behav., 2003, vol. 35, no. 4, p. 355.

    Article  PubMed  Google Scholar 

  22. Miyake, Y., Onishi, Y., and Pöppel, E., Two Types of Anticipation in Synchronization Tapping, Acta Neurobiol. Exp., 2004, vol. 64, p. 415.

    Google Scholar 

  23. Repp, B.H. and Doggett, R., Tapping to a Very Slow Beat: A Comparison of Musicians and Non Musicians, Music Perception, 2007, vol. 24, no. 4, p. 367.

    Article  Google Scholar 

  24. Brizzolara, D., Ferretti, G., Brovedani, P., et al., Is Interhemispeheric Transfer Time Related to Age? A Developmental Study, Behav. Brain Res., 1994, vol. 64, p. 179.

    Article  PubMed  CAS  Google Scholar 

  25. Smith, P.L. and Ratcliff, R., Psychology and Neurobiology of Simple Decisions, Trends Neurosci., 2004, vol. 27, no. 3, p. 161.

    Article  PubMed  CAS  Google Scholar 

  26. Schulze, H.-H. and Vorberg, D., Linear Phase Correction Models for Synchronization: Parameter Identification and Estimation of Parameters, Brain Cogn., 2002, vol. 48, p. 80.

    Article  PubMed  Google Scholar 

  27. Berwanger, D., Wittmann, M., von Steinbuchel, N., and von Suchodoletz, W., Measurment of Temporal-Order Judgment in Children, Acta Neurobiol. Exp., 2004, vol. 64, p. 387.

    Google Scholar 

  28. Kanabus, M., Szelag, E., Rojek, E., and Pöppel, E., Temporal Order Judgement for Auditory and Visual Stimuli, Acta Neurobiol. Exp., 2002, vol. 62, p. 263.

    Google Scholar 

  29. Takahashi, C.D., Nemet, D., Rose-Gottron, C.M., et al., Neuromotor Noise Limits Motor Performance, but not Motor Adaptation in Children, J. Neurophysiol., 2003, vol. 90, p. 703.

    Article  PubMed  Google Scholar 

  30. Zelazo, P.D., Carter, A., Reznick, J.S., and Frye, D., Early Development of Executive Function: A Problem-Solving Framework, Rev. Gen. Psychol., 1997, vol. 1, no. 2, p. 198.

    Article  Google Scholar 

  31. Davidson, M.C., Amso, D., Anderson, L.C., and Diamond, A., Development of Cognitive Control and Executive Functions from 4 to 13 Years: Evidence from Manipulations of Memory, Inhibition, and Task Switching, Neuropsychologia, 2006, vol. 44, no. 11, p. 2037.

    Article  PubMed  Google Scholar 

  32. Janata, P. and Grafton, S.T., Swinging in the Brain: Shared Neural Substrates for Behaviors Related to Sequencing and Music, Nat. Neurosci., 2003, vol. 6, no. 7, p. 682.

    Article  PubMed  CAS  Google Scholar 

  33. Rao, S.M., Harrington, D.L., Haaland, K.Y., et al., Distributed Neural Systems Underlying the Timing of Movements, J. Neurosci., 1997, vol. 17, no. 14, p. 5528.

    PubMed  CAS  Google Scholar 

  34. Jantzen, K.J., Steinberg, F.L., and Kelso, J.A.S., Brain Networks Underlying Human Timing Behavior Are Influenced by Prior Context, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, no. 17, p. 6815.

    Article  PubMed  CAS  Google Scholar 

  35. Zanto, T.P., Snyder, J.S., and Large, E.W., Neural Correlates of Rhythmic Expectancy, Adv. Cogn. Psychol., 2006, vol. 2, nos. 2–3, p. 221.

    Article  Google Scholar 

  36. Muller, K., Aschersleben, G., Schmitz, F., et al., Interversus Intramodal Integration in Sensorimotor Synchronization: A Combined Behavioral and Magnetoencephalographic Study, Exp. Brain Res., 2008, vol. 185, p. 309.

    Article  PubMed  Google Scholar 

  37. Handy, T.C., Gazzaniga, M.S., and Ivry, R.B., Cortical and Subcortical Contributions to the Representation of Temporal Information, Neuropsychologia, 2003, vol. 41, p. 1461.

    Article  PubMed  Google Scholar 

  38. Wilson, S.J., Pressing, J.L., and Wales, R.J., Modelling Rhythmic Function in a Musician Post-Stroke, Neuropsychologia, 2002, vol. 40, p. 1494.

    Article  PubMed  Google Scholar 

  39. Meck, W.H. and Benson, A.M., Dissecting the Brain’s Internal Clock: How Frontal-Striatal Circuitry Keeps Time and Shifts Attention, Brain Cogn., 2002, vol. 48, p. 195.

    Article  PubMed  Google Scholar 

  40. Spencer, R.M.C. and Ivry, R.B., Comparison of Patients with Parkinson’s Disease or Cerebellar Lesions in the Production of Periodic Movements Involving Event-Based or Emergent Timing, Brain Cogn., 2005, vol. 58, p. 84.

    Article  PubMed  Google Scholar 

  41. Schlerf, J.E., Spenser, R.M.C., Zelaznik, H.N., and Ivry, R.B., Timing of Rhythmic Movements in Patients with Cerebellar Degeneration, Cerebellum, 2007, vol. 6, no. 3, p. 221.

    Article  PubMed  CAS  Google Scholar 

  42. Spencer, R.M.C., Karmarkar, U., and Ivry, R.B., Evaluating Dedicated and Intrinsic Models of Temporal Encoding by Varying Context, Philos. Trans. R. Soc. London B., 2009, vol. 364, p. 1853.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Kurgansky, E.S. Shupikova, 2011, published in Fiziologiya Cheloveka, 2011, Vol. 37, No. 5, pp. 13–25.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurgansky, A.V., Shupikova, E.S. Visuomotor synchronization in adults and seven- to eight-year-old children. Hum Physiol 37, 526–536 (2011). https://doi.org/10.1134/S0362119711050100

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119711050100

Keywords

Navigation