Skip to main content
Log in

Cerebral hemodynamic response to maximal exercise

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The response of central and cerebral hemodynamics to a stepwise increase in dynamic exercise until failure was studied in healthy young men. Each subject was examined using Doppler ultrasound assessment of blood flow in the middle cerebral artery (MCA), Doppler echocardiography, and spiroergometry. Hemodynamic parameters were recorded before the study and during the last several seconds of each step of the dynamic exercise. The central hemodynamic and energy exchange parameters exhibited typical changes with increasing exercise intensity. The peak systolic blood flow velocity in the MCA increased only in response to exercise of a moderate intensity (1 W/kg body weight, 45% of the maximal oxygen uptake); the further increase in exercise intensity did not affect the blood flow velocity. The cerebral vascular resistance index at the last step of the exercise was 24% higher than at rest. The increase in the MCA resistance index during the exercise was moderately correlated with the increase in the pulse pressure and systolic blood pressure, whereas the increase in blood pressure was not related to the increase in the peak systolic blood flow velocity in the MCA in response to an exercise intensity at which the oxygen uptake was higher than 45% of its maximal value. The differences between the responses of central and cerebral hemodynamics to the stepwise increase in exercise intensity reflect the phenomenon of cerebral hemodynamic autoregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lassen, N.A., Brain, in Peripheral Circulation, Johnson, P.C., Ed., New York: John Wiley and Sons, 1978.

    Google Scholar 

  2. Moskalenko, Yu.E., Beketov, A.I., and Orlov, R.S., Mozgovoe krovvobrashchenie: Fiziko-khimicheskie priemy izucheniya (Cerebral Blood Circulation: Physical and Chemical Methods of Study), Leningrad: Nauka, 1988.

    Google Scholar 

  3. Moskalenko, Yu.E., Blood Supply to the Brain, in Fiziologiya krovoobrashcheniya: Fiziologiya sosudistoi sistemy (Rukovodstvo po fiziologii) (Physiology of Circulation: Physiology of the Vascular System (Handbook of Physiology)), Leningrad: Nauka, 1984, p. 352.

    Google Scholar 

  4. Panerai, R.B., White, R.P., Markus, H.S., and Evans, D.H., Grading of Cerebral Dynamic Autoregulation from Spontaneous Fluctuations in Arterial Blood Pressure, Stroke, 1998, vol. 29, no. 11, p. 2341.

    PubMed  CAS  Google Scholar 

  5. Busija, D.W., Cerebral Autoregulation, in The Regulation of Cerebral Blood Flow, Phillis, J.W., Ed., Boca Raton: CRC, 1993, p. 45.

    Google Scholar 

  6. Faraci, F.M. and Heistad, D.D., Regulation of the Cerebral Circulation: Role of Endothelium and Potassium Channels, Physiol. Rev., 1998, vol. 78, no. 1, p. 53.

    PubMed  CAS  Google Scholar 

  7. Gannushkina, I.V., The Pathophysiological Mechanisms of Cerebral Circulation Disorders and New Approaches to Their Prevention and Treatment, Zh. Nevropatol. Psikhiatr., 1996, no. 1, p. 14.

  8. White, R.P. and Markus, H.S., Impaired Dynamic Cerebral Autoregulation in Carotid Artery Stenosis, Stroke, 1997, vol. 28, no. 7, p. 1340.

    PubMed  CAS  Google Scholar 

  9. Nazinyan, A.G. and Shmidt, T.E., Possibilities of Transcranial Doppler Ultrasonography in Chronic Cerebral Circulation Disorders, Zh. Nevropatol. Psikhiatr., 2001, no. 8, p. 35.

  10. Vlasova, I.V., Kravchenko, A.I., and Fedosova, N.N., Cerebral Hemodynamics in Atherosclerotic Circulatory Encephalopathy, Med. Vizualiz., 2002, no. 2, p. 19.

  11. Aaslid, R. and Lindengaard, K.F., Cerebral Autoregulation Dynamics in Humans, Stroke, 1989, vol. 20, p. 45.

    PubMed  CAS  Google Scholar 

  12. Giller, C.A., A Bedside Test for Cerebral Autoregulation Transcranial Doppler Ultrasound, Acta Neurochir., 1991, vol. 108, nos. 1–2, p. 7.

    Article  CAS  Google Scholar 

  13. Kulikov, V.P. and Doronina, N.L., Cerebral Artery Blood Flow Response to Mild Physical Exercise, Fiziol. Chel., 1999, vol. 25, no. 6, p. 71 [Hum. Physiol. (Engl. Transl.), 1999, vol. 25, no. 6, p. 690].

    CAS  Google Scholar 

  14. Thomas, S.N., Cerebral Blood Flow during Submaximal and Maximal Dynamic Exercise in Humans, J. Appl. Physiol., 1989, vol. 67, no. 2, p. 744.

    PubMed  CAS  Google Scholar 

  15. Jorgensen, L.G., Perko, G., and Secher, N.H., Regional Cerebral Artery Mean Flow Velocity and Blood Flow during Dynamic Esrcise in Humans, J. Appl. Physiol., 1992, vol. 73, no. 5, p. 1825.

    PubMed  CAS  Google Scholar 

  16. Madsen, P.L., Sperling, B.K., and Warming, T., Mean Cerebral Artery Blood Velocity and Cerebral Blood Flow and O2 Uptake during Dynamic Exercise, J. Appl. Physiol., 1993, vol. 74, no. 1, p. 245.

    PubMed  CAS  Google Scholar 

  17. Hellstrom, G., Fischer-Colbrie, W., and Wahlgren, N.G., Carotid Artery Blood Flow and Middle Cerebral Artery Blood Flow Velocity during Physical Exercise, J. Appl. Physiol., 1996, vol. 81, no. 1, p. 413.

    PubMed  CAS  Google Scholar 

  18. Pott, F., Knudsen, L., Nowak, M., et al., Middle Cerebral Artery Blood Velocity during Rowing, Acta Physiol. Scand., 1997, vol. 160, no. 3, p. 251.

    Article  PubMed  CAS  Google Scholar 

  19. Poulin, M.J., Syed, R.J., and Robbins, P.A., Assessments of Flow by Transcranial Doppler Ultrasound in the Middle Cerebral Artery during Exercise in Humans, J. Appl. Physiol., 1999, vol. 86, no. 5, p. 1632.

    PubMed  CAS  Google Scholar 

  20. Kolb, V.G. and Kamyshnikov, V.S., Spravochnik po klinicheskoi khimii (Reference Book of Clinical Chemistry), Minsk: Belarus, 1982.

    Google Scholar 

  21. Karpman, V.L., Belotserkovskii, Z.B., and Gudkov, I.A., Testirovanie v sportivnoi meditsine (Testing in Sports Medicine), Moscow: Fizkul’tura i Sport, 1988.

    Google Scholar 

  22. Hellstrom, G. and Wahlgren, N.G., Physical Exercise Increases Middle Cerebral Artery Blood Flow Velocity, Neurosurg. Rev., 1993, vol. 16, no. 2, p. 151.

    Article  PubMed  CAS  Google Scholar 

  23. Brys, M., Brown, C.M., Marthol, H., et al., Dynamic Cerebral Autoregulation Remains Stable during Physical Challenge in Healthy Persons, Am. J. Physiol. Heart Circ. Physiol., 2003, vol. 285, p. 1048.

    Google Scholar 

  24. Jorgensen, L.G., Perko, G., Hanel, B., et al., Middle Cerebral Artery Flow Velocity and Blood Flow during Exercise and Muscle Ischemia in Humans, J. Appl. Physiol., 1992, vol. 72, no. 3, p. 1123.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.P. Kulikov, K.K. Gatal’skii, 2006, published in Fiziologiya Cheloveka, 2006, Vol. 32, No. 6, pp. 68–73.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulikov, V.P., Gatal’skii, K.K. Cerebral hemodynamic response to maximal exercise. Hum Physiol 32, 690–695 (2006). https://doi.org/10.1134/S0362119706060119

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119706060119

Keywords

Navigation