Skip to main content
Log in

Computing the Connected Components of the Complement to the Amoeba of a Polynomial in Several Complex Variables

  • Published:
Programming and Computer Software Aims and scope Submit manuscript

Abstract

In this paper, we propose a method for computing and visualizing the amoeba of a Laurent polynomial in several complex variables, which is applicable in arbitrary dimension. The algorithms developed based on this method are implemented as a free web service (http://amoebas.ru), which enables interactive computation of amoebas for polynomials in two variables, as well as provides a set of precomputed amoebas and their cross-sections in higher dimensions. The correctness and running time of the proposed algorithms are tested against a set of optimal polynomials in two, three, and four variables, which are generated using Mathematica computer algebra system. The developed program code makes it possible, in particular, to generate optimal hypergeometric polynomials in an arbitrary number of variables supported in an arbitrary zonotope given by a set of generating vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Abramov, S.A., Ryabenko, A.A., and Khmelnov, D.E., Laurent, rational, and hypergeometric solutions of linear q-difference systems of arbitrary order with polynomial coefficients, Program. Comput. Software, 2018, vol. 44, pp. 120–130.

    Article  MathSciNet  MATH  Google Scholar 

  2. Gelfand, I.M., Kapranov, M.M., and Zelevinsky, A.V., Discriminants, Resultants, and Multidimensional Determinants, Birkhäuser, 1994.

    Book  MATH  Google Scholar 

  3. Viro, O., What is an amoeba?, Not. AMS, 2002, vol. 49, no. 8, pp. 916–917.

    Google Scholar 

  4. Cherkis, S.A. and Ward, R.S., Moduli of monopole walls and amoebas, J. High Energy Phys., 2012, no. 5.

  5. Fujimori, T., Nitta, M., Ohta, K., Sakai, N., and Yamazaki, M., Intersecting solitons, amoeba, and tropical geometry, Phys. Rev. D: Part., Fields, Gravitation, Cosmol., 2008, vol. 78, no. 10.

  6. Kenyon, R., Okounkov, A., and Sheffield, S., Dimers and amoebae, Ann. Math., 2006, vol. 163, pp. 1019–1056.

    Article  MathSciNet  MATH  Google Scholar 

  7. Passare, M., Pochekutov, D., and Tsikh, A., Amoebas of complex hypersurfaces in statistical thermodynamics, Math., Phys., Anal., Geom., 2013, vol. 16, no. 1, pp. 89–108.

    Article  MathSciNet  MATH  Google Scholar 

  8. Zahabi, A., Quiver asymptotics and amoeba: Instantons on toric Calabi–Yau divisors, Phys. Rev. D, 2021, vol. 103, no. 8.

  9. Maeda, T. and Nakatsu, T., Amoebas and instantons, Int. J. Modern Phys. A, 2007, vol. 22, no. 5, pp. 937–983.

    Article  MathSciNet  MATH  Google Scholar 

  10. Mikhalkin, G., Real algebraic curves, the moment map and amoebas, Ann. Math., 2000, vol. 151, no. 2, pp. 309–326.

    Article  MathSciNet  MATH  Google Scholar 

  11. Forsberg, M., Amoebas and Laurent series, Doctoral Thesis, Stockholm: Royal Institute of Technology (KTH), 1998.

  12. Leksell, M. and Komorowski, W., Amoeba program: Computing and visualizing amoebas for some complex-valued bivariate expressions. http://qrf.servequake.com/amoeba/AmoebaProgram.pdf.

  13. Rullgård, H., Topics in geometry, analysis, and inverse problems, Doctoral Thesis, Stockholm University, 2003. http://www.diva-portal.org/smash/get/diva2:190169/FULLTEXT01.pdf.

  14. Theobald, T., Computing amoebas, Exp. Math., 2002, vol. 11, no. 4, pp. 513–526.

    Article  MathSciNet  MATH  Google Scholar 

  15. Timme, S., A package to compute amoebas in 2 and 3 variables. https://github.com/saschatimme/PolynomialAmoebas.jl.

  16. Theobald, T. and De Wolff, T., Approximating amoebas and coamoebas by sums of squares, Math. Comput., 2015, vol. 84, no. 291, pp. 455–473.

    Article  MathSciNet  MATH  Google Scholar 

  17. Purbhoo, K., A nullstellensatz for amoebas, Duke Math. J., 2008, vol. 141, no. 3, pp. 407–445.

    Article  MathSciNet  MATH  Google Scholar 

  18. Forsgård, J., Matusevich, L.F., Mehlhop, N., and De Wolff, T., Lopsided approximation of amoebas, Math. Comput., 2018, vol. 88, pp. 485–500.

    Article  MathSciNet  MATH  Google Scholar 

  19. Anthony, E., Grant, S., Gritzmann, P., and Rojas, J.M., Polynomial-time amoeba neighborhood membership and faster localized solving, Math. Visualization, 2015, vol. 38, pp. 255–277.

    Article  MathSciNet  MATH  Google Scholar 

  20. Bogdanov, D.V., Kytmanov, A.A., and Sadykov, T.M., Algorithmic computation of polynomial amoebas, Lect. Notes Comput. Sci. (including Lect. Notes Artif. Intell. and Lect. Notes Bioinf.), 2016, vol. 9890, pp. 87–100.

  21. Nisse, M. and Sadykov, T.M., Amoeba-shaped polyhedral complex of an algebraic hypersurface, J. Geom. Anal., 2019, vol. 29, no. 2, pp. 1356–1368.

    Article  MathSciNet  MATH  Google Scholar 

  22. Bogdanov, D.V. and Sadykov, T.M., Hypergeometric polynomials are optimal, Math. Z, 2020, vol. 296, no. 1–2, pp. 373–390.

    Article  MathSciNet  MATH  Google Scholar 

  23. Forsberg, M., Passare, M., and Tsikh, A.K., Laurent determinants and arrangements of hyperplane amoebas, Adv. Math., 2000, vol. 151, pp. 45–70.

    Article  MathSciNet  MATH  Google Scholar 

  24. Klausen, R.P., Kinematic singularities of Feynman integrals and principal A-determinants, J. High Energy Phys., 2022, no. 2.

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 22-21-00556 (https://rscf.ru/project/22-21-00556).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. A. Zhukov or T. M. Sadykov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Kornienko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukov, T.A., Sadykov, T.M. Computing the Connected Components of the Complement to the Amoeba of a Polynomial in Several Complex Variables. Program Comput Soft 49, 91–99 (2023). https://doi.org/10.1134/S0361768823020159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0361768823020159

Navigation