Skip to main content

Polynomial-Time Amoeba Neighborhood Membership and Faster Localized Solving

  • Conference paper
  • First Online:
Topological and Statistical Methods for Complex Data

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

We derive efficient algorithms for coarse approximation of complex algebraic hypersurfaces, useful for estimating the distance between an input polynomial zero set and a given query point. Our methods work best on sparse polynomials of high degree (in any number of variables) but are nevertheless completely general. The underlying ideas, which we take the time to describe without an excess of algebraic geometry terminology, come from tropical geometry. We then apply our methods to finding roots of n × n systems near a given query point, thereby reducing a hard algebraic problem to high-precision linear optimization. We prove new upper and lower complexity estimates along the way.

Dedicated to Tien-Yien Li, in honor of his birthday.

Partially supported by NSF REU grant DMS-1156589.

Partially supported by NSF REU grant DMS-1156589.

Work supported in part by the German Research Foundation (DFG).

Partially supported by NSF MCS grant DMS-0915245.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A hole of a subset \(S\! \subseteq \! \mathbb{R}^{n}\) is simply a bounded connected component of the complement \(\mathbb{R}^{n}\setminus S\).

  2. 2.

    That is, smallest convex set containing…

  3. 3.

    The cell looks hexagonal because it has a pair of vertices too close to distinguish visually.

References

  1. D’Andrea, C., Krick, T., Sombra, M.: Heights of varieties in multiprojective spaces and arithmetic Nullstellensatze. Ann. Sci. l’ENS fascicule 4, 549–627 (2013)

    MathSciNet  Google Scholar 

  2. D’Andrea, C., Galligo, A., Sombra, M.: Quantitative equidistribution for the solution of a system of sparse polynomial equations. Am. J. Math (to appear)

    Google Scholar 

  3. Arora, S., Barak, B.: Computational Complexity. A Modern Approach. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  4. Avendaño, M., Kogan, R., Nisse, M., Rojas, J.M.: Metric Estimates and membership complexity for archimedean amoebae and tropical hypersurfaces. Submitted for publication, also available as Math ArXiV preprint 1307.3681

    Google Scholar 

  5. Baker, A.: The theory of linear forms in logarithms. In: Transcendence Theory: Advances and Applications: Proceedings of a Conference Held at the University of Cambridge, Cambridge, January–February 1976. Academic, London (1977)

    Google Scholar 

  6. Baker, M., Rumely, R.: Potential Theory and Dynamics on the Berkovich Projective Line. Mathematical Surveys and Monographs, vol. 159. American Mathematical Society, Providence (2010)

    Google Scholar 

  7. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically Solving Polynomial Systems with Bertini. Software, Environments and Tools Series. Society for Industrial and Applied Mathematics (2013)

    Google Scholar 

  8. Beltrán, C., Pardo, L.M.: Smale’s 17th problem: Average polynomial time to compute affine and projective solutions. J. Am. Math. Soc. 22, 363–385 (2009)

    Article  MATH  Google Scholar 

  9. Bernstein, D.J.: Computing Logarithm Intervals with the Arithmetic-Geometric Mean Iterations. Available from http://cr.yp.to/papers.html

  10. Bettale, L., Faugére, J.-C., Perret, L.: Cryptanalysis of HFE, multi-HFE and variants for odd and even characteristic. Designs Codes Cryptogr. 69(1), 1–52 (2013)

    Article  MATH  Google Scholar 

  11. Bihan, F., Rojas, J.M., Stella, C.: Faster real feasibility via circuit discriminants. In: Proceedings of ISSAC 2009 (July 28–31, Seoul, Korea), pp. 39–46. ACM (2009)

    Google Scholar 

  12. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer (1998)

    Google Scholar 

  13. Bürgisser, P., Scheiblechner, P.: On the complexity of counting components of algebraic varieties. J. Symb. Comput. 44(9), 1114–1136 (2009)

    Article  MATH  Google Scholar 

  14. Bürgisser, P., Cucker, F.: Solving polynomial equations in smoothed polynomial time and a near solution to Smale’s 17th problem. In: Proceedings STOC (Symposium on the Theory of Computation) 2010, pp. 503–512. ACM (2010)

    Google Scholar 

  15. De Loera, J.A., Rambau, J., Santos, F.: Triangulations, Structures for Algorithms and Applications, Algorithms and Computation in Mathematics, vol. 25. Springer, Berlin (2010)

    Google Scholar 

  16. Dickenstein, A., Feichtner, E.M., Sturmfels, B.: Tropical discriminants. J. Am. Math. Soc. 20(4), 1111–1133 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Einsiedler, M., Kapranov, M., Lind, D.: Non-Archimedean amoebas and tropical varieties. J. die reine Angew. Math. (Crelles J.) 2006(601), 139–157 (2006)

    Google Scholar 

  18. Emiris, I.Z., Canny, J.: Efficient incremental algorithms for the sparse resultant and mixed volume. J. Symb. Comput. 20(2), 117–149 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Faugère, J.-C., Gaudry, P., Huot, L., Renault, G.: Using symmetries in the index calculus for elliptic curves discrete logarithm. J. Cryptol. 1–40 (2013)

    Google Scholar 

  20. Faugère, J.-C., Hering, M., Phan, J.: The membrane inclusions curvature equations. Adv. Appl. Math. 31(4), 643–658 (2003).

    Article  MATH  Google Scholar 

  21. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness, A Series of Books in the Mathematical Sciences. W. H. Freeman and Co., San Francisco (1979)

    MATH  Google Scholar 

  22. Gel’fand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants and Multidimensional Determinants. Birkhäuser, Boston (1994)

    Google Scholar 

  23. Gritzmann, P.: Grundlagen der Mathematischen Optimierung: Diskrete Strukturen, Komplexitätstheorie, Konvexitätstheorie, Lineare Optimierung, Simplex-Algorithmus, Dualität. Springer (2013)

    Book  Google Scholar 

  24. Gritzmann, P., Klee, V.: On the complexity of some basic problems in computational convexity: I. Containment problems. Discrete Math. 136, 129–174 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  25. Gritzmann, P., Klee, V.: On the complexity of some basic problems in computational convexity: II. Volume and mixed volumes. In: Bisztriczky, T., McMullen, P., Schneider, R., Ivic Weiss A. (eds) Polytopes: Abstract, Convex and Computational, pp. 373–466. Kluwer, Boston (1994)

    Google Scholar 

  26. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, New York (1993)

    Book  MATH  Google Scholar 

  27. Grünbaum, B.: Convex Polytopes. Wiley-Interscience, London (1967); Ziegler, G. (ed) Convex Polytopes, 2nd edn. Graduate Texts in Mathematics, vol. 221. Springer (2003)

    Google Scholar 

  28. Hao, W., Hauenstein, J.D., Hu, B., Liu, Y., Sommese, A., Zhang, Y.-T.: Continuation along bifurcation branches for a tumor model with a necrotic core. J. Sci. Comput. 53, 395–413 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  29. Hauenstein, J., Rodriguez, J., Sturmfels, B.: Maximum likelihood for matrices with rank constraints. J. Algebraic Stat. 5(1), 18–38 (2014). Also available as Math ArXiV preprint 1210.0198

    Google Scholar 

  30. Herbst, M., Hori, K., Page, D.: Phases of N​ = ​ 2 theories in 1 + 1 dimensions with boundary. High Energy Phys. ArXiV preprint 0803.2045v1

    Google Scholar 

  31. Huan, L.J., Li, T.-Y.: Parallel homotopy algorithm for symmetric large sparse eigenproblems. J. Comput. Appl. Math. 60(1–2), 77–100 (1995)

    Article  MathSciNet  Google Scholar 

  32. Itenberg, I., Mikhalkin, G., Shustin, E.: Tropical Algebraic Geometry, 2nd edn. Oberwolfach Seminars, vol. 35. Birkhäuser Verlag, Basel (2009)

    Google Scholar 

  33. Karp, R.M.: Reducibility among combinatorial problems. In Miller, R.E., Thatcher, J.W. (eds) Complexity of Computer Computations, pp. 85–103. Plenum, New York (1972).

    Chapter  Google Scholar 

  34. Khachiyan, L.: A polynomial algorithm in linear programming. Soviet Math. Doklady 20, 191–194 (1979)

    MATH  Google Scholar 

  35. Khovanskii, A.G.: Fewnomials. AMS, Providence (1991)

    MATH  Google Scholar 

  36. Koiran, P., Portier, N., Rojas, J.M.: Counting Tropically Degenerate Valuations and p-adic Approaches to the Hardness of the Permanent. Submitted for publication, also available as Math ArXiV preprint 1309.0486

    Google Scholar 

  37. Lee, T.-L., Li, T.-Y.: Mixed volume computation in solving polynomial systems. In: Randomization, Relaxation, and Complexity in Polynomial Equation Solving, Contemporary Mathematics, vol. 556, pp. 97–112. AMS (2011)

    Google Scholar 

  38. Litvinov, G.L., Sergeev, S.N. (eds) Tropical and Idempotent Mathematics, International Workshop TROPICAL-07 (Tropical and Idempotent Mathematics, August 25—30, 2007. Independent University, Contemporary Mathematics, vol. 495. AMS (2009)

    Google Scholar 

  39. Maclagan, D., Sturmfels, B.: Introduction to Tropical Geometry, AMS Graduate Studies in Mathematics, vol. 161, AMS (2015, to appear).

    Google Scholar 

  40. Matveev, E.M.: An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II. Izv. Ross. Akad. Nauk Ser. Mat. 64(6), 125–180 (2000); translation in Izv. Math. 64(6), 1217–1269 (2000)

    Google Scholar 

  41. Mikhalkin, G.: Decomposition into pairs-of-pants for complex algebraic hypersurfaces. Topology 43(5), 1035–1065 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  42. Müller, S., Feliu, E., Regensburger, G., Conradi, C., Shiu, A., Dickenstein, A.: Sign conditions for injectivity of generalized polynomial maps with applications to chemical reaction networks and real algebraic geometry. Math ArXiV preprint 1311.5493

    Google Scholar 

  43. Nesterenko, Y.: Linear Forms in Logarithms of Rational Numbers. Diophantine Approximation (Cetraro, 2000). Lecture Notes in Math., vol. 1819, pp. 53–106. Springer, Berlin (2003)

    Google Scholar 

  44. Newton, I.: Letter to Oldenburg dated 1676 Oct 24, the correspondence of Isaac Newton, II, pp. 126–127. Cambridge University Press, Cambridge (1960)

    Google Scholar 

  45. Ng, CTD., Barketau, M.S., Cheng, T.C.E., Kovalyov, M.Y.: Product Partition and related problems of scheduling and systems reliability: Computational complexity and approximation. Eur. J. Oper. Res. 207, 601–604 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  46. Nilsson, L., Passare, M.: Discriminant coamoebas in dimension two. J. Commut. Algebra 2(4), 447–471 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  47. Ning, Y., Avendaño, M.E., Mortari, D.: Sequential design of satellite formations with invariant distances. AIAA J. Spacecraft Rockets 48(6), 1025–1032 (2011)

    Article  Google Scholar 

  48. Nisse, M., Sottile, F.: Phase limit set of a variety. J. Algebra Number Theory 7(2), 339–352 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  49. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1995)

    Google Scholar 

  50. Phillipson, K.R., Rojas, J.M.: \(\mathcal{A}\)-discriminants, and their cuttings, for complex exponents (2014, in preparation)

    Google Scholar 

  51. Pin, J.-E.: Tropical semirings. Idempotency (Bristol, 1994), Publ. Newton Inst., 11, pp. 50–69. Cambridge Univ. Press, Cambridge (1998)

    Google Scholar 

  52. Plaisted, D.A.: New NP-hard and NP-complete polynomial and integer divisibility problems. Theor. Comput. Sci. 31(1–2), 125–138 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  53. Schrijver, A.: Theory of Linear and Integer Programming. Wiley (1986)

    Google Scholar 

  54. Shub, M., Smale, S.: The complexity of Bezout’s theorem I: Geometric aspects. J. Am. Math. Soc. 6, 459–501 (1992)

    MathSciNet  Google Scholar 

  55. Shub, M., Smale, S.: The Complexity of Bezout’s theorem II: Volumes and Probabilities. In: Eyssette, F., Galligo, A. (eds) Computational Algebraic Geometry, pp. 267–285. Birkhauser (1992)

    Google Scholar 

  56. Shub, M., Smale, S.: The Complexity of Bezout’s theorem III: Condition number and packing. J. Complexity 9, 4–14 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  57. Shub, M., Smale, S.: The complexity of Bezout’s theorem IV: Probability of success; extensions. SIAM J. Numer. Anal. 33(1), 128–148 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  58. Shub, M., Smale, S.: The complexity of Bezout’s theorem V: Polynomial time. Theor. Comput. Sci. 133(1), 141–164 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  59. Sipser, M.: Introduction to the Theory of Computation, 3rd edn. Cengage Learning (2012)

    Google Scholar 

  60. Smale, Steve, Mathematical problems for the next century. Math. Intelligencer 20(2), 7–15 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  61. Smale, S.: Mathematical Problems for the Next Century. Mathematics: Frontiers and Perspectives, pp. 271–294. Amer. Math. Soc., Providence (2000)

    Google Scholar 

  62. Sommese, A.J., Wampler, C.W.: The Numerical Solution to Systems of Polynomials Arising in Engineering and Science. World Scientific, Singapore (2005)

    Book  Google Scholar 

  63. Spielman, D., Teng, S.H.: Smoothed analysis of termination of linear programming algorithms. Math. Program. Ser. B 97 (2003)

    Google Scholar 

  64. Verschelde, J.: Polynomial homotopy continuation with PHCpack. ACM Commun. Comput. Algebra 44(4), 217–220 (2010)

    MathSciNet  Google Scholar 

  65. Viro, O.Y.: Dequantization of real algebraic geometry on a logarithmic paper. In: Proceedings of the 3rd European Congress of Mathematicians. Progress in Math, vol. 201, pp. 135–146. Birkhäuser (2001)

    Google Scholar 

  66. Ziegler, G.M.: Lectures on Polytopes, Graduate Texts in Mathematics. Springer (1995)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Maurice Rojas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Anthony, E., Grant, S., Gritzmann, P., Rojas, J.M. (2015). Polynomial-Time Amoeba Neighborhood Membership and Faster Localized Solving. In: Bennett, J., Vivodtzev, F., Pascucci, V. (eds) Topological and Statistical Methods for Complex Data. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44900-4_15

Download citation

Publish with us

Policies and ethics