Skip to main content
Log in

Scalar Fields for Bianchi-I Model in \(\boldsymbol{f(R,T)}\) Theory of Gravity

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

In physics and cosmology, scalar fields are considered basic. In this study, we are interested to inspect the conduct of massless scalar field (SF) and massive scalar field (MSF) models in \(f(R,T)\) theory for Bianchi-I universe models. We discuss two cosmological models with respect to late cosmic acceleration, using constant scalar potential and exponential scalar potential models. Also, we study the behavior of a massive scalar field. Finally, we obtain our results in \(f(R,T)\) and general relativity (GR). In addition, we obtained an LRS Bianchi-I metric as a result of the solutions we made and selection of special constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. S. Perlmutter et al., Astrophys. J. 517, 565 (1999).

    Article  ADS  Google Scholar 

  2. A. G. Riess et al., Astrophys. J. 659, 98 (2007).

    Article  ADS  Google Scholar 

  3. S. Capozziello and M. Francaviglia, Gen. Rel. Grav. 40, 357 (2008).

    Article  ADS  Google Scholar 

  4. S. Nojiri and S. D. Odintsov, Phys. Rep. 505, 59 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Nojiri, S. D. Odintsov, and M. Sami, Phys. Rev. D 74, 046004 (2006).

  6. E. V. Linder, Phys Rev. D 81, 127301 (2010).

  7. T. Harko et al, Phys Rev. D 84, 024020 (2011).

  8. P. H. R. S. Moraes, Astrophys. Space Sci. 352, 273 (2014).

    Article  ADS  Google Scholar 

  9. K. A. Olive, Phys. Rev. 190, 307 (1990).

    Google Scholar 

  10. O. Bertolami, Nuovo Cim. B 93, 36 (1986).

    Article  ADS  Google Scholar 

  11. B. Ratra and P. J. E. Peebles, Phys. Rev. D 37, 3406 (1988).

    Article  ADS  Google Scholar 

  12. R. R. Caldwell, R. Dave, and P. J. Steinhardt, Phys. Rev. Lett 80, 1582 (1998).

    Article  ADS  Google Scholar 

  13. O. Bertolami and J. Paramos, Class. Quantum Grav. 21, 3309 (2004).

    Article  ADS  Google Scholar 

  14. M. Sharif and M. Zubair, J. Phys. Soc. Jpn. 81, 114005 (2012).

  15. M. Sharif and I. Nawazish, Eur. Phys. J. C 77, 198 (2017).

    Article  ADS  Google Scholar 

  16. Santhi et al., Can. J. Phys. 95, 136 (2017).

    Article  ADS  Google Scholar 

  17. C. P. Singh and V. Singh, Mod. Phy. Lett. A 26, 1495 (2011).

    Article  ADS  Google Scholar 

  18. M. Sharif and A. Jawad, Commun. Theor. Phys. 60, 183 (2013).

    Article  ADS  Google Scholar 

  19. C. Aktaş, Mod. Phys. Lett. A 34, 1950066 (2019).

  20. S. Aygün, C. Aktaş, P. K. Sahoo, and B. K. Bishi, Grav. Cosmol. 24, 302 (2018).

    Article  ADS  Google Scholar 

  21. V. Singh and C. Singh, Astrophys. Space Sci. 356, 153 (2015).

    Article  ADS  Google Scholar 

  22. C. P. Singh and M. Srivastava, Indian J. Phys. 91, 1645 (2017).

    Article  ADS  Google Scholar 

  23. D. T. Solanke and T. M. Karade, Indian J. Phys. 91, 1457 (2017).

    Article  ADS  Google Scholar 

  24. G. P. Singh et al., Chinese Journal of Physics 54, 244 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  25. G. Mohanty and B. D. Pradhan , Int. J. Theor. Phys. 31, 151 (1992).

    Article  Google Scholar 

  26. L. M. Burko and G. Khanna, Phys. Rev. D 70, 044018 (2004).

  27. S. Hod and T. Piran, Phys. Rev. D 58, 044018 (1998).

  28. S. Aygün, C. Aktaş, and I. Yimaz, J. Geom. and Phys. 62, 100 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  29. J. K. Singh and S. Rani, Int. J. Theor. Phys. 54, 544 (2015).

    Google Scholar 

  30. R. L. Naidu, Can. J. Phys. 97, 330 (2019).

    Article  ADS  Google Scholar 

  31. Y. Aditya and D. R. K. Reddy, Astrophys. Space Sci. 363, 207 (2018b).

    Article  ADS  Google Scholar 

  32. R. L. Naidu et al., Heliyon 5, 01645 (2019).

    Article  Google Scholar 

  33. J. K. Singh, Int. J. Theor. Phys. 48, 905 (2009).

    Article  ADS  Google Scholar 

  34. S. K. J. Pacif et al., Int. J. Geom. Methods Mod. Phys. 14, 1750111 (2017).

  35. P. G. Ferreira and M. Joyce, Phys. Rev. D 58, 023503 (1998).

  36. A. Coley and M. Goliath, Class. Quantum Grav. 17, 2557 (2000).

    Article  ADS  Google Scholar 

  37. J. K. Singh and S. Ram, Astrophys. Space Sci. 236, 277 (1996).

    Article  ADS  Google Scholar 

  38. C. B. Kilinc, Astrophys. Space Sci. 222, 171 (1994).

    Article  ADS  Google Scholar 

  39. S. D. Katore and S. P. Hatkar, Progr. Theor. Experim. Phys. 2016, id. 033E01 (2016).

  40. C. Kömürcü and C. Aktaş, Mod. Phys. Lett. A 35, 2050263 (2020).

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yasemin Kabaoğlu or Can Aktaş.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabaoğlu, Y., Aktaş, C. Scalar Fields for Bianchi-I Model in \(\boldsymbol{f(R,T)}\) Theory of Gravity. Gravit. Cosmol. 30, 222–228 (2024). https://doi.org/10.1134/S0202289324700117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289324700117

Navigation