Skip to main content
Log in

Cosmography of \(\boldsymbol{f(R,T)}\) Gravity

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

Currently, in order to explain the accelerated expansion phase of the Universe, several alternative approaches have been proposed, among which the most common are dark energy models and alternative theories of gravity. Although these approaches rest on very different physical aspects, it has been shown that both can be in agreement with the data in the current status of cosmological observations, thus leading to an enormous degeneration among these models. Therefore, until evidence of higher experimental accuracy is available, more conservative model-independent approaches are a useful tool for breaking this degenerated cosmological models picture. Cosmography as a kinematic study of the Universe is the most popular candidate in this regard. In this paper, we show how to construct the cosmographic equations for the \(f(R,T)\) theory of gravity within a conservative scenario of this theory, where \(R\) is the Ricci curvature scalar, and \(T\) is the trace of the energy-moment tensor. Such equations relate the \(f(R,T)\) function and its derivatives at current time \(t_{0}\) to the cosmographic parameters \(q_{0}\), \(j_{0}\), and \(s_{0}\). In addition, we show how these equations can be written within different dark energy scenarios, thus helping to discriminate among them. We also show how different \(f(R,T)\) gravity models can be constrained using these cosmographic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. G. Riess et al., Astron. J. 116, 1009 (1998).

    Article  ADS  Google Scholar 

  2. S. Perlmutter et al., Astrophys. J. 517. 565 (1999).

    Article  ADS  Google Scholar 

  3. O. Farooq et al., Astrophys. J. 835, 26 (2017).

    Article  ADS  Google Scholar 

  4. F. Y. Wang and Z.G. Dai, Month. Not. Roy. Astron. Soc. 368, 371 (2006).

    Article  ADS  Google Scholar 

  5. J. V. Cunha, Phys. Rev. D 79, 047301 (2009).

  6. B. Ryden, Introduction to Cosmology (Addison Wesley, San Francisco, USA, 2003).

    Google Scholar 

  7. A. H. Guth, Phys. Rev. D 23, 347 (1981).

    Article  ADS  Google Scholar 

  8. L. A. Popa, J. Cosm. Astrop. Phys. 10, 025 (2011).

  9. M. Clutton-Brock, Quart. J. Roy. Astron. Soc. 34, 411 (1993).

    ADS  Google Scholar 

  10. Y. Shtanov, Ann. Phys. 19, 332 (2010).

    Article  MathSciNet  Google Scholar 

  11. M. C. Guzzetti et al., Riv. Nuo. Cim. 39, 399 (2016).

    ADS  Google Scholar 

  12. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).

    Article  ADS  Google Scholar 

  13. S. Nesseris and L. Perivolaropoulos, Phys. Rev. D 73, 103511 (2006).

  14. T. Chiba, Phys. Lett. B 575, 1 (2003).

    Article  ADS  Google Scholar 

  15. S. Capozziello et al., Gen. Rel. Grav. 30, 1247 (1998).

    Article  ADS  Google Scholar 

  16. S. Capozziello and M. de Laurentis, Phys. Rep. 509, 167 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  17. S. Capozziello and M. Francaviglia, Gen. Rel. Grav. 40, 357 (2008).

    Article  ADS  Google Scholar 

  18. T. Clifton et al., Phys. Rep. 513, 1 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  19. S. Nojiri et al., Phys. Rep. 692, 1 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  20. V. K. Oikonomou, Phys. Rev. D 103, 4 (2021).

    Google Scholar 

  21. V. K. Oikonomou, Phys. Rev. D 103, 12 (2021).

    Google Scholar 

  22. V. K. Oikonomou and I. Giannakoudi, Int. J. Mod. Phys. D 31, 09 (2022).

  23. S. D. Odintsov et al., Symmetry 15, 9 (2023).

    Article  Google Scholar 

  24. A. G. Suvorov, Phys. Rev. D 99, 124026 (2019).

  25. G. Cognola et al., J. Cosm. Astrop. Phys. 02, 010 (2005).

  26. A. Azadi et al., Phys. Lett. B 670, 210 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  27. G. Olmo and D. Rubiera-Garcia, Universe 1, 173 (2015).

    Article  ADS  Google Scholar 

  28. D. Momeni and H. Gholizade, Int. J. Mod. Phys. D 18, 1719 (2009).

    Article  ADS  Google Scholar 

  29. J. Santos et al., Phys. Rev. D 76, 083513 (2007).

  30. J. Santos et al., Int. J. Mod. Phys. D 19, 1315 (2010).

    Article  ADS  Google Scholar 

  31. A. De Felice and S. Tsujikawa, Living Rev. Rel. 13, 3 (2010).

    Article  Google Scholar 

  32. G. J. Olmo, Int. J. Mod. Phys. D, 20, 4 (2011).

    Article  Google Scholar 

  33. T. Harko and F. S. N. Lobo, Eur. Phys. J. C 70, 373 (2010).

    Article  ADS  Google Scholar 

  34. R. P. L. Azevedo and J. Páramos, Phys. Rev. D 94, 064036 (2016).

  35. T. Harko et al., Phys. Rev. D 84, 024020 (2011).

  36. M. E. S. et al., Phys. Rev. D 94, 024032 (2016).

  37. P. H. R. S. Moraes et al., J. Cosm. Astrop. Phys. 6, 005 (2016).

  38. F. G. Alvarenga et al., Phys. Rev. D 87, 103526 (2013).

  39. D. R. K. Reddy et al., Astrophys. Spa. Sci. 342, 249 (2012).

    Google Scholar 

  40. H. Shabani and M. Farhoudi, Phys. Rev. D 88, 044048 (2013).

  41. G. Giribet et al., J. High Ener. Phys. 05, 007 (2006).

  42. A. E. Dominguez and E. Gallo, Phys. Rev. D 73, 064018 (2006).

  43. T. Torii and K.-I. Maeda, Phys. Rev. D 58, 084004 (1998).

  44. C.-M. Chen et al., Phys. Rev. D 75, 084030 (2007).

  45. R. Myrzakulov et al., Gen. Rel. Grav. 43, 1671 (2011).

    Article  ADS  Google Scholar 

  46. S.-Y. Zhou et al., J. Cosm. Astrop. Phys. 07, 009 (2009).

  47. A. de Felice and S. Tsujikawa, Phys. Lett. B 675, 1 (2009).

    Article  ADS  Google Scholar 

  48. A. de Felice and S. Tsujikawa, Phys. Rev. D 80, 063516 (2009).

  49. A. de Felice et al., Phys. Rev. D 82, 023524 (2010).

  50. E. Elizalde et al., Class. Quantum Grav. 27, 095007 (2010).

  51. Á. de la Cruz-Dombriz and D. Sáez-Gómez, Class. Quantum Grav. 29, 245014 (2012).

  52. M. de Laurentis et al., Phys. Rev. D 91, 083531 (2015).

  53. S. Santos da Costa et al., Class. Quantum Grav. 35, 075013 (2018).

  54. Y.-F. Cai et al., Rep. Prog. Phys. 79, 106901 (2016).

  55. R. Ferraro and F. Fiorini, Phys. Rev. D 75, 084031 (2007).

  56. Y. N. Obukhov and J. G. Pereira, Phys. Rev. D 67, 044016 (2003).

  57. K. Bamba et al., Phys. Rev. D 88, 084042 (2013).

  58. T. P. Sotiriou et al., Phys. Rev. D 83, 104030 (2011).

  59. A. Golovnev et al., Class. Quant. Grav. 34, 145013 (2017).

  60. T. Vargas, Gen. Rel. Grav. 36, 1255 (2004).

    Article  ADS  Google Scholar 

  61. V. C. de Andrade et al., Phys. Rev. Lett. 84, 4533 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  62. T. Harko et al., J. Cosm. Astrop. Phys. 12, 021 (2014).

  63. S. Chattopadhyay et al., Astrophys. Spa. Sci. 353, 279 (2014).

    Google Scholar 

  64. G. Kofinas et al., Class. Quant. Grav. 31, 175011 (2014).

  65. G. Kofinas and E. N. Saridakis, Phys. Rev. D 90, 084045 (2014).

  66. M. Sharif and A. Ikram, Eur. Phys. J. C 76, 640 (2016).

    Article  ADS  Google Scholar 

  67. M. Sharif and A. Ikram, Astrophys. Spa. Sci. 363, 178 (2018).

    ADS  Google Scholar 

  68. M. Z.-U.-H., Bhatti et al., Int. J. Mod. Phys. D 27, 1850044 (2018).

  69. Z. Yousaf, Astrophys. Spa. Sci. 363, 226 (2018).

    Google Scholar 

  70. M. K. Mak and T. Harko, Int. J. Mod. Phys. D 11, 1389 (2002).

    Article  ADS  Google Scholar 

  71. L. Amendola, Phys. Rev. D 62, 043511 (2000).

  72. G. Huey and B.D. Wandelt, Phys. Rev. D 74, 023519 (2006).

  73. V. Sahni, Class. Quant. Grav. 19, 3435 (2002).

    Article  ADS  Google Scholar 

  74. E. V. Linder, Gen. Rel. Grav. 40, 329 (2008).

    Article  ADS  Google Scholar 

  75. M. C. Bento et al., Phys. Lett. B 575, 172 (2003).

    Article  ADS  Google Scholar 

  76. M. C. Bento et al., Gen. Rel. Grav. 35, 2063 (2003).

    Article  ADS  Google Scholar 

  77. W. Chakraborty et al., Grav. Cosm. 13, 293 (2007).

    ADS  Google Scholar 

  78. P. H. R. S. Moraes, Int. J. Mod. D 25, 1650009 (2016).

  79. M. Trodden, Int. J. Mod. Phys. D 16, 2065 (2007).

    Article  ADS  Google Scholar 

  80. M. Trodden, Gen. Rel. Grav. 43, 3367 (2011).

    Article  ADS  Google Scholar 

  81. S. Tsujikawa, Lect. Not. Phys. 800, 99 (2010).

    Article  ADS  Google Scholar 

  82. S. Tsujikawa, Class. Quantum Grav. 30, 214003 (2013).

  83. J. Bloomfield et al., J. Cosm. Astrop. Phys. 08, 010 (2013).

  84. L. P. Chimento et al., Phys. Rev. D 62, 063508 (2000).

  85. G. Olivares et al., Phys. Rev. D 77, 063513 (2008).

  86. K. Bamba et al., Astrophys. Space Sci. 342, 155 (2012).

    Article  ADS  Google Scholar 

  87. W. Yang et al., Phys. Rev. D 100, 023522 (2019).

  88. S. Weinberg, Gravitation and Cosmology (Wiley, New York, USA, 1972).

    Google Scholar 

  89. M. Visser, Class. Quant. Grav. 21, 2603 (2004).

    Article  ADS  Google Scholar 

  90. M. Visser, Gen. Rel. Grav. 37, 1541 (2005).

    Article  ADS  Google Scholar 

  91. F. A. T. Pannia and S. E. P. Bergliaffa, J. Cosm. Astrop. Phys. 08, 030 (2013).

  92. L. Pizza, Phys. Rev. D 91, 124048 (2015).

  93. N. Pires et al., Phys. Rev. D 82, 067302 (2010).

  94. A. Aviles et al., Phys. Rev. D 87, 044012 (2013).

  95. M. Bouhmadi-López et al., Phys. Rev. D 82, 103526 (2010).

  96. S. Capozziello et al., Phys. Rev. D 78, 063504 (2008).

  97. S. Capozziello et al., Phys. Rev. D 84, 043527 (2011).

  98. E. Piedipalumbo et al., Int. J. Mod. Phys. D 24, 1550100 (2015).

  99. S. Capozziello et al., Int. J. Mod. Phys. D 28, 1930016 (2019).

  100. E. Barrientos et al., Phys. Rev. D 97, 104041 (2018).

  101. R.-G. Cai et al., Phys. Rev. D 93, 043517 (2016).

  102. M. Ruderman, Ann. Rev. Astron. Astrophys. 10, 427 (1972).

    Article  ADS  Google Scholar 

  103. V. Canuto and S. M. Chitre, Phys. Rev. D 8, 1587 (1974).

    Article  ADS  Google Scholar 

  104. P. H. R. S. Moraes et al., Eur. Phys. J. C 78, 192 (2018).

    Article  ADS  Google Scholar 

  105. C.-Q. Geng et al., J. Cosm. Astrop. Phys. 08, 032 (2017).

  106. J. Barrientos and G. F. Rubilar, Phys. Rev. D 90, 028501 (2014).

  107. S. Chakraborty, Gen. Rel. Grav. 45, 2039 (2013).

    Article  ADS  Google Scholar 

  108. S. I. dos Santos et al., J. Plus 134, 398 (2019).

    Google Scholar 

  109. G. A. Carvalho et al., Int. J. Mod. Phys. D 29, 2050075 (2020).

  110. H. Velten and T. R. P. Caramés, Phys. Rev. D 95, 123536 (2017).

  111. R. Woodard, “Avoiding Dark Energy with 1/R Modifications of Gravity,” in The Invisible Universe: Dark Matter and Dark Energy (Springer, Berlin, 2007), pp. 403–433.

    Google Scholar 

  112. A. V. Frolov, Phys. Rev. Lett. 101, 6 (2008).

    Article  Google Scholar 

  113. S. E. Joras, Int. J. of Mod. Phys. 3, 36 (2011).

    MathSciNet  Google Scholar 

  114. A. Albrecht et al., Fermilab Report No. FERMILAB-FN-0793-A (2006).

  115. E. Linder, Phys. Rev. Lett. 90, 9 (2003).

    Article  Google Scholar 

  116. V. Vitagliano et al., J. Cosm. Astrop. Phys. 03, 005 (2010).

  117. C. Cattöen and M. Visser, Class. Quantum Grav. 24, 5985 (2007).

    Article  ADS  Google Scholar 

  118. S. Capozziello et al., Mon. Not. R. Astron. Soc. 494, 2576 (2020).

    Article  ADS  Google Scholar 

  119. C. Gruber and O. Luongo, Phys. Rev. D 89, 103506 (2014).

  120. A. Aviles et al., Phys. Rev. D 90, 043531 (2014).

  121. S. Capozziello et al., Mon. Not. R. Astron. Soc. 476, 3924 (2018).

    Article  ADS  Google Scholar 

  122. N. Aghanim et al., Astron. Astroph. 641, A6 (2020).

    Article  Google Scholar 

  123. A. De Felice and S. Tsujikawa, Liv. Rev. Rel., 13, 3 (2010).

    Article  Google Scholar 

  124. A.A. Starobinsky, Phys. Lett. B 91, 1 (1980).

    Article  MathSciNet  Google Scholar 

  125. S. Capozziello et al., Phys. Rev. D 84, 124061 (2011).

  126. A. Aviles et al., Phys. Rev. D 86, 123516 (2012).

  127. M. Demianski et al., Mon. Not. R. Astron. Soc. 426, 1396 (2012).

    Article  ADS  Google Scholar 

  128. J. Xia et al., Phys. Rev. D 85, 043520 (2012).

  129. L. Xu and Y. Wang, Phys. Lett. 702, 114 (2011).

    Article  Google Scholar 

  130. L. Izzo et al., Astron. & Astrop. 508, 1 (2009).

    Article  Google Scholar 

  131. S. Capozziello and L. Izzo, Nuc. Phys. B 194, 206 (2009).

    Article  Google Scholar 

  132. D. Rapetti et al., Mon. Not. R. Astron. Soc. 375, 1510–1520 (2007).

    Article  ADS  Google Scholar 

  133. V. Sahni et al., JETP Lett. 77, 5 (2003).

    Article  Google Scholar 

  134. U. Alam et al., Mon. Not. R. Astron. Soc. 344, 1057 (2003).

    Article  ADS  Google Scholar 

  135. M. Bouhmadi-López et al., Phys. Rev. D 82, 103526 (2010).

  136. M. Visser et al., Phys. Rev. Lett. 90, 201102 (2003).

  137. I. S. Farias and P. H. R. S. Moraes, Eur. Phys. J. Plus 138, 5 (2023).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank the two anonymous referees, whose comments and suggestions helped us to significantly improve the manuscript.

Funding

ISF thanks CAPES for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Farias.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farias, I.S., Moraes, P.H. Cosmography of \(\boldsymbol{f(R,T)}\) Gravity. Gravit. Cosmol. 30, 28–39 (2024). https://doi.org/10.1134/S0202289324010055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289324010055

Navigation