Skip to main content
Log in

Varying \(\boldsymbol{\Lambda}\) Theory Revisited

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We revisit the variable \(\Lambda\) theory recently developed by Alexander et al. [1, 2]. We implement it to explain the current expansion of the Universe. The varying \(\Lambda\) theory reduces one degree of freedom. The varying \(\Lambda\) term (cosmological term) follows the energy density of the Universe. We consider such a theory which does not respect self-dual symmetry. The Bianchi identity enforces the \(\Lambda\) term to be a constant for a theory without torsion. However, torsion can incorporate a varying \(\Lambda\) term in the action. We consider a form of the action which has such a varying \(\Lambda\) term, and the presence of only nonrelativistic matter energy density. We fit the luminosity distance according to the model and compare it with that in the \(\Lambda\textrm{{CDM}}\) model and find their close behavior. However, we find a current value of matter energy density \(\rho_{m0}\) larger than the critical energy density. Using the supernova data from Union 2.1 compilation, we further consider a different set of parameters, for which \({\kappa\rho_{m0}}/{3H_{0}^{2}}\) becomes close to unity but, however, greater. For this set of parameters, we find a negative value in the effective equation of state, however, the model has a very different pattern of the Hubble parameter from the standard scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. S. Alexander, M. Cortцks, A. R. Liddle, J. Magueijo, R. Sims, and L. Smolin, “The cosmology of minimal varying Lambda theories,” Phys. Rev. D 100, 083507 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  2. S. Alexander, M. Cortцks, A. R. Liddle, J. Magueijo, R. Sims, and L. Smolin, “A zero-parameter extension of general relativity with varying cosmological constant,” Phys. Rev. D 100, 083506 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  3. S. Weinberg, “The Cosmological Constant Problem,” Rev. Mod. Phys. 61, 1 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  4. J. D. Barrow and F. J. Tipler, The Anthropic Cosmological Principle (Oxford University Press, 1988).

    Google Scholar 

  5. P. C. W. Davies, “The anthropic principle,” Prog. Part. Nucl. Phys. 10, 1 (1983).

    Article  ADS  Google Scholar 

  6. J. J. van der Bij, H. van Dam and Y. J. Ng, “The exchange of massless spin two particles,” Physica 116A, 307 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  7. W. Buchmuller and N. Dragon, “Einstein gravity from restricted coordinate invariance,” Phys. Lett. B 207, 292 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  8. S. W. Hawking, “The cosmological constant is probably zero,” Phys. Lett. B 134, 403 (1984).

    Article  ADS  Google Scholar 

  9. S. R. Coleman, “Why there is nothing rather than something: a theory of the cosmological constant,” Nucl. Phys. B 310, 643 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  10. S. R. Coleman and F. De Luccia, “Gravitational effects on and of vacuum decay,” Phys. Rev. D 21, 3305 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  11. S. Weinberg, “Does gravitation resolve the ambiguity among supersymmetry vacua?,” Phys. Rev. Lett. 48, 1776 (1982).

    Article  ADS  Google Scholar 

  12. D. Friedan, E. J. Martinec, and S. H. Shenker, “Conformal invariance, supersymmetry and string theory,” Nucl. Phys. B 271, 93 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Dine and N. Seiberg, “Nonrenormalization theorems in superstring theory,” Phys. Rev. Lett. 57, 2625 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Morozov and A. Perelomov, “Statistical sums in superstring theory. Genus 2,” Phys. Lett. B 199, 209 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  15. A. K. Yadav and A. Sharma, “A transitioning universe with time-varying \(G\) and decaying \(\Lambda\),” Res. Astron. Astrophys. 13, 501–508 (2013).

    Article  ADS  Google Scholar 

  16. G. Papagiannopoulos, P. Tsiapi, S. Basilakos and A. Paliathanasis, “Dynamics and cosmological evolution in \(\Lambda\)-varying cosmology,” Eur. Phys. J. C 80, 55 (2020).

    Article  ADS  Google Scholar 

  17. C. Chawla, R. K. Mishra, and A. Pradhan, “String cosmological models from early deceleration to current acceleration phase with varying \(G\) and Lambda,” Eur. Phys. J. Plus 127, 137 (2012).

    Article  Google Scholar 

  18. J. P. Singh and R. K. Tiwari, “Perfect fluid Bianchi Type-I cosmological models with time varying \(G\) and Lambda,” Pramana 70, 565–574 (2008).

    Article  ADS  Google Scholar 

  19. G. K. Goswami, M. Mishra, A. K. Yadav, and A. Pradhan, “Two fluid scenario in Bianchi Type-I universe,” Mod. Phys. Lett. A 35, 2050086 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  20. G. K. Goswami, A. K. Yadav, and R. N. Dewangan, “Magnetised strings in \(\Lambda\)-dominated anisotropic Universe,” Int. J. Theor. Phys. 55, 4651–4664 (2016).

    Article  Google Scholar 

  21. A. K. Yadav, “A transitioning universe with anisotropic dark energy,” Astrophys. Space Sci. 361, 276 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  22. G. K. Goswami, R. N. Dewangan, and A. K. Yadav, “\(\Lambda\)CDM type Heckmann-Schuking model and Union 2.1 compilation,” Grav. Cosmol. 22, 388–393 (2016).

    Article  ADS  Google Scholar 

  23. G. K. Goswami, A. K. Yadav and M. Mishra, “\(\Lambda\)CDM-type cosmological model and observational constraints,” Int. J. Theor. Phys. 54, 315-325 (2015).

    Article  Google Scholar 

  24. D. M. Scolnic, et al., “The Complete light-curve sample of spectroscopically confirmed Sne Ia from Pan-STARRS1 and cosmological constraints from the combined Pantheon sample,” Astrophys. J. 859, 101 (2018).

    Article  ADS  Google Scholar 

  25. A. K. Camlibel, I. Semiz, and M. A. Feyizoglu, “Pantheon update on a model-independent analysis of cosmological supernova data,” arXiv: 2001.04408.

  26. D. L. Miller and D. Branch, “Supernova absolute-magnitude distributions,” Astron. J. 100, 530–539 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to YuHong Fang or Naveen K. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Singh, N.K. Varying \(\boldsymbol{\Lambda}\) Theory Revisited. Gravit. Cosmol. 27, 47–53 (2021). https://doi.org/10.1134/S0202289321010084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289321010084

Navigation