Skip to main content
Log in

Geometric Phase of Linear Cosmological Perturbations in Two-Field Inflation

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

As a footprint of primordial perturbations in cosmological observations, the Berry phase of cosmological perturbations can serve to probe the cosmological inflation. Considering linear perturbations in two-field slow-roll inflation, we derive the Hamiltonians of the scalar and tensor Fourier modes in the form of time-dependent harmonic oscillator Hamiltonians. We find the invariant operators of the resulting Hamiltonians and use these invariants to calculate the Berry phase for sub-horizon scalar and tensor modes in the adiabatic limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Berry, Proc. Roy. Soc. Lond. A 392, 45 (1984).

    Article  ADS  Google Scholar 

  2. A. Shapere and F. Wilczek, Geometric Phases in Physics (World Scientific, Singapore, 1989).

    MATH  Google Scholar 

  3. A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu, and J. Zwanziger, The Geometric Phase in Quantum Systems: Foundations, Mathematical Concepts, Applications in Molecular and Condensed Matter Physics (Springer, Berlin, 2013).

    MATH  Google Scholar 

  4. M. Mehrafarin and H. Balajany, Phys. Lett. A 374, 1608 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  5. M. Mehrafarin and R. Torabi, Phys. Lett. A 373, 2114 (2009).

    Article  ADS  Google Scholar 

  6. R. Torabi and M. Mehrafarin, JETP Lett. 95, 277 (2012).

    Article  ADS  Google Scholar 

  7. R. Torabi and M. Mehrafarin, JETP Lett. 88, 590 (2008).

    Article  ADS  Google Scholar 

  8. K. Bakke, I. Pedrosa, and C. Furtado, J. Math. Phys. 50, 3521 (2009).

    Article  Google Scholar 

  9. Y. Q. Cai and G. Papini, Mod. Phys. Lett. A 4, 1143 (1989).

    Article  ADS  Google Scholar 

  10. Y. Q. Cai and G. Papini, Class. Quant. Grav. 7, 269 (1990).

    Article  ADS  Google Scholar 

  11. A. Corichi and M. Pierrie, Phys. Rev. D 51, 5870 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  12. P. O. Mazur, Phys. Rev. Lett. 57, 929 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  13. D. P. Dutta, Phys. Rev. D 48, 5746 (1993).

    Article  ADS  Google Scholar 

  14. V. F. Mukhanov, H. A. Feldmann, and R. H. Brandenberger, Phys. Rep. 215, 203 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  15. D. Campo and R. Parentani, Phys. Rev. D 74, 025001 (2006).

    Article  ADS  Google Scholar 

  16. A. H. Guth, Phys. Rev. D 23, 347 (1981).

    Article  ADS  Google Scholar 

  17. B. A. Bassett, S. Tsujikawa and D. Wands, Rev. Mod. Phys. 78, 537 (2006).

    Article  ADS  Google Scholar 

  18. B. K. Pal, S. Pal, and B. Basu, Class. Quantum Grav. 30, 12 (2013).

    Article  Google Scholar 

  19. D. Polarski and A. A. Starobinsky, Nucl. Phys. B 385, 623 (1992).

    Article  ADS  Google Scholar 

  20. V. F. Mukhanov and P. J. Steinhardt, Phys. Lett. B 422, 52 (1998).

    Article  ADS  Google Scholar 

  21. D. Langlois, Phys. Rev. D 59, 123512 (1999).

    Article  ADS  Google Scholar 

  22. J. C. Hwang and H. Noh, Phys. Lett. B 495, 277 (2000).

    Article  ADS  Google Scholar 

  23. C. Gordon, D. Wands, B. A. Bassett, and R. Maartens, Phys. Rev. D 63, 023506 (2000).

    Article  ADS  Google Scholar 

  24. J. C. Hwang and H. Noh, Class. Quant. Grav. 19, 527 (2002).

    Article  ADS  Google Scholar 

  25. S. G. Nibbelink and B. van Tent, Class. Quant. Grav. 19, 613 (2002).

    Article  ADS  Google Scholar 

  26. R. Schützhold, M. Uhlmann, L. Petersen, H. Schmitz, A. Friedenauer, and T. Schätz, Phys. Rev. Lett. 99, 201301 (2007).

    Article  ADS  Google Scholar 

  27. I. Fuentes-Guridi, S. Bose, and V. Vedral, Phys. Rev. Lett. 85, 5018 (2000).

    Article  ADS  Google Scholar 

  28. H. R. Jr. Lewis, J. Math. Phys. 9, 1997 (1968).

    Article  Google Scholar 

  29. H. R. Jr. Lewis and W. B. Riesenfeld, J. Math. Phys. 10, 1458 (1969).

    Article  ADS  Google Scholar 

  30. J. G. de Assis, V. B. Bezerra, and C. Furtado, Mod. Phys. Lett. A 17, 1665 (2002).

    Article  ADS  Google Scholar 

  31. A. M. de M. Carvalho, C. Furtado, and I. A. Pedrosa, Phys. Rev. D 70, 123523 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  32. I. A. Pedrosa, C. Furtado, and A. Rosas, Phys. Lett. B 651, 384 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  33. I. A. Pedrosa, K. Bakkae, and C. Furtado, Phys. Lett. B 671, 314 (2009).

    Article  ADS  Google Scholar 

  34. C. E. F. Lopes, I. A. Pedrosa, C. Furtado, and A. M. De M. Carvalho, J. Math. Phys. 50, 083511 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  35. D. B. Monteoliva, H. J. Korsch, and J. A. Nunez, J. Phys. A 27, 6897 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  36. R. Arnowitt, S. Deser, and C. Misner, Phys. Rev. 116, 1322 (1959).

    Article  MathSciNet  ADS  Google Scholar 

  37. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (W.H. Freeman, San Francisco, 1973).

    Google Scholar 

  38. J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, Phys. Rev. D 28, 679 (1983).

    Article  ADS  Google Scholar 

  39. D. Wands, K. A. Malik, D. H. Lyth, and A. R. Liddle, Phys. Rev. D 62, 043527 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  40. K. A. Malik and D. Wands, Class. Quant. Grav. 21, 65 (2004).

    Article  ADS  Google Scholar 

  41. G. I. Rigopoulos and E. P. S. Shellard, Phys. Rev. D 68, 123518 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  42. G. I. Rigopoulos, E. P. S. Shellard, and B. J. W. van Tent, Phys. Rev. D 73 083521 (2006).

    Article  ADS  Google Scholar 

  43. E. Tzavara and B. Van Tent, JCAP, 2012, 023 (2012).

    Article  Google Scholar 

  44. M. H. Engineer and G. Ghosh, J. Phys. A 21, L95 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mehrafarin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balajany, H., Mehrafarin, M. Geometric Phase of Linear Cosmological Perturbations in Two-Field Inflation. Gravit. Cosmol. 25, 184–189 (2019). https://doi.org/10.1134/S0202289319020038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289319020038

Navigation