Skip to main content
Log in

Tensor perturbations from bounce inflation scenario in f(Q) gravity

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In this paper, we construct a bounce inflation cosmological scenario in the framework of the modified symmetric teleparallel gravity, namely f(Q) theory, and investigate the tensor perturbations therein. As is well-known, the tensor perturbations generated in the very early Universe (inflation and pre-inflation regions) can account for the primordial gravitational waves (PGWs) that are to be detected by the next generation of GW experiments. We discuss the stability condition of the tensor perturbations in the bounce inflation process and investigate in detail the evolution of the perturbation variable. The general form of the tensor power spectrum is obtained both for large as well as small scale modes. As a result, we show both kinds of modes (short or long wavelength modes), and the tensor spectrum may get a positive tilt in the parametric range where the tensor perturbation proves to be stable—this interestingly hints an enhancement of gravitational waves’ amplitude in the background of the f(Q) bounce-inflation scenario. Moreover, we study the LQC-like scenario as a specific case of our model, in which, the primordial tensor power spectrum turns out to be nearly scale-invariant on both small and large scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Borde, and A. Vilenkin, Phys. Rev. Lett. 72, 3305 (1994).

    Article  ADS  Google Scholar 

  2. S. W. Hawking, and R. Penrose, Proc. R. Soc. Lond. A 314, 529 (1970).

    Article  ADS  Google Scholar 

  3. S. W. Hawking, and G. F. Ellis, The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge, 2023).

    Book  Google Scholar 

  4. M. Novello, and S. Bergliaffa, Phys. Rep. 463, 127 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  5. D. Battefeld, and P. Peter, Phys. Rep. 571, 1 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  6. Y. F. Cai, Sci. China-Phys. Mech. Astron. 57, 1414 (2014).

    Article  ADS  Google Scholar 

  7. Y. F. Cai, T. Qiu, X. Zhang, Y. S. Piao, and M. Li, J. High Energ. Phys. 2007(10), 071 (2007).

    Article  Google Scholar 

  8. C. Lin, R. H. Brandenberger, and L. Perreault Levasseur, J. Cosmol. Astropart. Phys. 2011(04), 019 (2011).

    Article  Google Scholar 

  9. T. Qiu, J. Evslin, Y.-F. Cai, M. Li, and X. Zhang, J Cosmol. Astropart. Phys. 2011(10), 036 (2011).

    Article  Google Scholar 

  10. D. A. Easson, I. Sawicki, and A. Vikman, J. Cosmol. Astropart. Phys. 2011(11), 021 (2011).

    Article  ADS  Google Scholar 

  11. Y. F. Cai, D. A. Easson, and R. Brandenberger, J. Cosmol. Astropart. Phys. 2012(08), 020 (2012).

    Article  Google Scholar 

  12. T. Qiu, X. Gao, and E. N. Saridakis, Phys. Rev. D 88, 043525 (2013).

    Article  ADS  Google Scholar 

  13. T. Qiu, and Y. T. Wang, J. High Energ. Phys. 2015(04), 130 (2015).

    Article  Google Scholar 

  14. A. Ilyas, M. Zhu, Y. Zheng, Y. F. Cai, and E. N. Saridakis, J. Cosmol. Astropart. Phys. 2020(09), 002 (2020).

    Article  Google Scholar 

  15. M. Zhu, A. Ilyas, Y. Zheng, Y.-F. Cai, and E. N. Saridakis, J. Cosmol. Astropart. Phys. 2021(11), 045 (2021).

    Article  Google Scholar 

  16. A. Ilyas, M. Zhu, Y. Zheng, and Y. F. Cai, J. High Energ. Phys. 2021(01), 141 (2021).

    Article  Google Scholar 

  17. E. Battista, Class. Quantum Grav. 38, 195007 (2021).

    Article  ADS  Google Scholar 

  18. T. Qiu, and K.-C. Yang, J. Cosmol. Astropart. Phys. 2010(11), 012 (2010).

    Article  Google Scholar 

  19. T. Qiu, Class. Quantum Grav. 27, 215013 (2010).

    Article  ADS  Google Scholar 

  20. S. Carloni, P. K. S. Dunsby, and D. Solomons, Class. Quantum Grav. 23, 1913 (2006).

    Article  ADS  Google Scholar 

  21. S. D. Odintsov, V. K. Oikonomou, and T. Paul, Class. Quantum Grav. 37, 235005 (2020).

    Article  ADS  Google Scholar 

  22. S. Nojiri, S. D. Odintsov, and T. Paul, Phys. Dark Universe 35, 100984 (2022).

    Article  Google Scholar 

  23. S. Odintsov, and T. Paul, Universe 8, 292 (2022).

    Article  ADS  Google Scholar 

  24. Y. F. Cai, S. H. Chen, J. B. Dent, S. Dutta, and E. N. Saridakis, Class. Quantum Grav. 28, 215011 (2011).

    Article  ADS  Google Scholar 

  25. M. Hohmann, L. Jarv, and U. Ualikhanova, Phys. Rev. D 96, 043508 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  26. T. Qiu, K. Tian, and S. Bu, Eur. Phys. J. C 79, 261 (2019).

    Article  ADS  Google Scholar 

  27. F. Bajardi, D. Vernieri, and S. Capozziello, Eur. Phys. J. Plus 135, 912 (2020).

    Article  Google Scholar 

  28. S. Mandal, N. Myrzakulov, P. K. Sahoo, and R. Myrzakulov, Eur. Phys. J. Plus 136, 760 (2021).

    Article  Google Scholar 

  29. A. S. Agrawal, L. Pati, S. K. Tripathy, and B. Mishra, Phys. Dark Universe 33, 100863 (2021).

    Article  Google Scholar 

  30. A. Y. Shaikh, arXiv: 2208.03171.

  31. G. N. Gadbail, A. Kolhatkar, S. Mandal, and P. K. Sahoo, Eur. Phys. J. C 83, 595 (2023).

    Article  ADS  Google Scholar 

  32. A. S. Agrawal, B. Mishra, and P. K. Agrawal, Eur. Phys. J. C 83, 113 (2023).

    Article  ADS  Google Scholar 

  33. G. Date, and G. M. Hossain, Phys. Rev. Lett. 94, 011302 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  34. J. B. Jiménez, L. Heisenberg, and T. Koivisto, Phys. Rev. D 98, 044048 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  35. R. Aldrovandi, and J. G. Pereira, Teleparallel Gravity: An Introduction (Springer, Dordrecht, 2013).

    Book  Google Scholar 

  36. J. M. Nester, and H.-J. Yo, Chin. J. Phys. 37, 113 (1999).

    Google Scholar 

  37. D. Iosifidis, A. C. Petkou, and C. G. Tsagas, Gen. Relat. Gravit. 51, 66 (2019).

    Article  ADS  Google Scholar 

  38. J. Beltrán Jiménez, L. Heisenberg, and T. Koivisto, Universe 5, 173 (2019).

    Article  ADS  Google Scholar 

  39. V. Gakis, M. Krššák, J. L. Said, and E. N. Saridakis, Phys. Rev. D 101, 064024 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  40. J. Beltrán Jiménez, L. Heisenberg, D. Iosifidis, A. Jiménez-Cano, and T. S. Koivisto, Phys. Lett. B 805, 135422 (2020).

    Article  MathSciNet  Google Scholar 

  41. J. Beltrán Jiménez, and T. S. Koivisto, Universe 7, 143 (2021).

    Article  ADS  Google Scholar 

  42. D. Zhao, Eur. Phys. J. C 82, 303 (2022).

    Article  ADS  Google Scholar 

  43. J. Lu, X. Zhao, and G. Chee, Eur. Phys. J. C 79, 530 (2019).

    Article  Google Scholar 

  44. Y. Xu, T. Harko, S. Shahidi, and S. D. Liang, Eur. Phys. J. C 80, 449 (2020).

    Article  ADS  Google Scholar 

  45. Z. Hassan, S. Mandal, and P. K. Sahoo, Fortschritte Phys. 69, 2100023 (2021).

    Article  ADS  Google Scholar 

  46. S. Mandal, A. Parida, and P. K. Sahoo, Universe 8, 240 (2022).

    Article  ADS  Google Scholar 

  47. Q. M. Fu, L. Zhao, and Q. Y. Xie, Eur. Phys. J. C 81, 890 (2021).

    Article  ADS  Google Scholar 

  48. W. Khyllep, A. Paliathanasis, and J. Dutta, Phys. Rev. D 103, 103521 (2021).

    Article  ADS  Google Scholar 

  49. F. K. Anagnostopoulos, S. Basilakos, and E. N. Saridakis, Phys. Lett. B 822, 136634 (2021).

    Article  Google Scholar 

  50. R. H. Lin, and X. H. Zhai, Phys. Rev. D 103, 124001 (2021) [Erratum: Phys. Rev. D 106, 069902 (2022)].

    Article  ADS  Google Scholar 

  51. M. Shiravand, S. Fakhry, and M. Farhoudi, Phys. Dark Universe 37, 101106 (2022).

    Article  Google Scholar 

  52. S. Capozziello, and M. Shokri, Phys. Dark Universe 37, 101113 (2022).

    Article  Google Scholar 

  53. J. B. Jiménez, L. Heisenberg, T. Koivisto, and S. Pekar, Phys. Rev. D 101, 103507 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  54. A. Nájera, and A. Fajardo, J. Cosmol. Astropart. Phys. 2022(03), 020 (2022).

    Article  Google Scholar 

  55. M. Hohmann, C. Pfeifer, U. Ualikhanova, and J. L. Said, Phys. Rev. D 99, 024009 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  56. I. Soudi, G. Farrugia, J. L. Said, V. Gakis, and E. N. Saridakis, Phys. Rev. D 100, 044008 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  57. A. Conroy, and T. Koivisto, J. Cosmol. Astropart. Phys. 2019(12), 016 (2019).

    Article  Google Scholar 

  58. W. Zhao, T. Zhu, J. Qiao, and A. Wang, Phys. Rev. D 101, 024002 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  59. Z. Chen, Y. Yu, and X. Gao, arXiv: 2212.14362.

  60. R. Lazkoz, F. S. N. Lobo, M. Ortiz-Baños, and V. Salzano, Phys. Rev. D 100, 104027 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  61. B. J. Barros, T. Barreiro, T. Koivisto, and N. J. Nunes, Phys. Dark Universe 30, 100616 (2020).

    Article  Google Scholar 

  62. N. Frusciante, Phys. Rev. D 103, 044021 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  63. S. Arora, A. Parida, and P. K. Sahoo, Eur. Phys. J. C 81, 555 (2021).

    Article  ADS  Google Scholar 

  64. A. Golovnev, in Introduction to teleparallel gravities: Proceedings of the 9th Mathematical Physics Meeting: Summer School and Conference on Modern Mathematical Physics, Belgrade, 2018.

  65. L. Heisenberg, Phys. Rep. 796, 1 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  66. K. Hu, T. Katsuragawa, and T. Qiu, Phys. Rev. D 106, 044025 (2022).

    Article  ADS  Google Scholar 

  67. Z. Arzoumanian, P. T. Baker, H. Blumer, B. Bécsy, A. Brazier, P. R. Brook, S. Burke-Spolaor, S. Chatterjee, S. Chen, J. M. Cordes, N. J. Cornish, F. Crawford, H. T. Cromartie, M. E. DeCesar, P. B. Demorest, T. Dolch, J. A. Ellis, E. C. Ferrara, W. Fiore, E. Fonseca, N. Garver-Daniels, P. A. Gentile, D. C. Good, J. S. Hazboun, A. M. Holgado, K. Islo, R. J. Jennings, M. L. Jones, A. R. Kaiser, D. L. Kaplan, L. Z. Kelley, J. S. Key, N. Laal, M. T. Lam, T. J. W. Lazio, D. R. Lorimer, J. Luo, R. S. Lynch, D. R. Madison, M. A. McLaughlin, C. M. F. Mingarelli, C. Ng, D. J. Nice, T. T. Pennucci, N. S. Pol, S. M. Ransom, P. S. Ray, B. J. Shapiro-Albert, X. Siemens, J. Simon, R. Spiewak, I. H. Stairs, D. R. Stinebring, K. Stovall, J. P. Sun, J. K. Swiggum, S. R. Taylor, J. E. Turner, M. Vallisneri, S. J. Vigeland, C. A. Witt, and The NANOGrav Collaboration, Astrophys. J. Lett. 905, L34 (2020).

    Article  ADS  Google Scholar 

  68. Y.-P. Li, Y. Liu, S.-Y. Li, H. Li, and X. Zhang, arXiv: 1709.09053.

  69. H. Li, S. Y. Li, Y. Liu, Y. P. Li, Y. Cai, M. Li, G. B. Zhao, C. Z. Liu, Z. W. Li, H. Xu, D. Wu, Y. J. Zhang, Z. H. Fan, Y. Q. Yao, C. L. Kuo, F. J. Lu, and X. Zhang, Natl. Sci. Rev. 6, 145 (2019).

    Article  Google Scholar 

  70. G. Agazie, A. Anumarlapudi, A. M. Archibald, Z. Arzoumanian, P. T. Baker, B. Bécsy, L. Blecha, A. Brazier, P. R. Brook, S. Burke-Spolaor, R. Burnette, R. Case, M. Charisi, S. Chatterjee, K. Chatziioannou, B. D. Cheeseboro, S. Chen, T. Cohen, J. M. Cordes, N. J. Cornish, F. Crawford, H. T. Cromartie, K. Crowter, C. J. Cutler, M. E. DeCesar, D. DeGan, P. B. Demorest, H. Deng, T. Dolch, B. Drachler, J. A. Ellis, E. C. Ferrara, W. Fiore, E. Fonseca, G. E. Freedman, N. Garver-Daniels, P. A. Gentile, K. A. Gersbach, J. Glaser, D. C. Good, K. Gültekin, J. S. Hazboun, S. Hourihane, K. Islo, R. J. Jennings, A. D. Johnson, M. L. Jones, A. R. Kaiser, D. L. Kaplan, L. Z. Kelley, M. Kerr, J. S. Key, T. C. Klein, N. Laal, M. T. Lam, W. G. Lamb, T. J. W. Lazio, N. Lewandowska, T. B. Littenberg, T. Liu, A. Lommen, D. R. Lorimer, J. Luo, R. S. Lynch, C. P. Ma, D. R. Madison, M. A. Mattson, A. McEwen, J. W. McKee, M. A. McLaughlin, N. McMann, B. W. Meyers, P. M. Meyers, C. M. F. Mingarelli, A. Mitridate, P. Natarajan, C. Ng, D. J. Nice, S. K. Ocker, K. D. Olum, T. T. Pennucci, B. B. P. Perera, P. Petrov, N. S. Pol, H. A. Radovan, S. M. Ransom, P. S. Ray, J. D. Romano, S. C. Sardesai, A. Schmiedekamp, C. Schmiedekamp, K. Schmitz, L. Schult, B. J. Shapiro-Albert, X. Siemens, J. Simon, M. S. Siwek, I. H. Stairs, D. R. Stinebring, K. Stovall, J. P. Sun, A. Susobhanan, J. K. Swiggum, J. Taylor, S. R. Taylor, J. E. Turner, C. Unal, M. Vallisneri, R. van Haasteren, S. J. Vigeland, H. M. Wahl, Q. Wang, C. A. Witt, O. Young, and The NANOGrav Collaboration, Astrophys. J. Lett. 951, L8 (2023).

    Article  ADS  Google Scholar 

  71. J. Antoniadis, P. Arumugam, S. Arumugam, S. Babak, M. Bagchi, A.-S. Bak Nielsen, C. G. Bassa, A. Bathula, A. Berthereau, M. Bonetti, E. Bortolas, P. R. Brook, M. Burgay, R. N. Caballero, A. Chalumeau, D. J. Champion, S. Chanlaridis, S. Chen, I. Cognard, S. Dandapat, D. Deb, S. Desai, G. Desvignes, N. Dhanda-Batra, C. Dwivedi, M. Falxa, R. D. Ferdman, A. Franchini, J. R. Gair, B. Goncharov, A. Gopakumar, E. Graikou, J.-M. Grießmeier, L. Guillemot, Y. J. Guo, Y. Gupta, S. Hisano, H. Hu, F. Iraci, D. Izquierdo-Villalba, J. Jang, J. Jawor, G. H. Janssen, A. Jessner, B. C. Joshi, F. Kareem, R. Karuppusamy, E. F. Keane, M. J. Keith, D. Kharbanda, T. Kikunaga, N. Kolhe, M. Kramer, M. A. Krishnakumar, K. Lackeos, K. J. Lee, K. Liu, Y. Liu, A. G. Lyne, J. W. McKee, Y. Maan, R. A. Main, M. B. Mickaliger, I. C. Nitu, K. Nobleson, A. K. Paladi, A. Parthasarathy, B. B. P. Perera, D. Perrodin, A. Petiteau, N. K. Porayko, A. Possenti, T. Prabu, H. Quelquejay Leclere, P. Rana, A. Samajdar, S. A. Sanidas, A. Sesana, G. Shaifullah, J. Singha, L. Speri, R. Spiewak, A. Srivastava, B. W. Stappers, M. Surnis, S. C. Susarla, A. Susobhanan, K. Takahashi, P. Tarafdar, G. Theureau, C. Tiburzi, E. van der Wateren, A. Vecchio, V. Venkatraman Krishnan, J. P. W. Verbiest, J. Wang, L. Wang, and Z. Wu, arXiv: 2306.16214.

  72. D. J. Reardon, A. Zic, R. M. Shannon, G. B. Hobbs, M. Bailes, V. Di Marco, A. Kapur, A. F. Rogers, E. Thrane, J. Askew, N. D. R. Bhat, A. Cameron, M. Curylo, W. A. Coles, S. Dai, B. Goncharov, M. Kerr, A. Kulkarni, Y. Levin, M. E. Lower, R. N. Manchester, R. Mandow, M. T. Miles, R. S. Nathan, S. Oslowski, C. J. Russell, R. Spiewak, S. Zhang, and X. J. Zhu, Astrophys. J. Lett. 951, L6 (2023).

    Article  ADS  Google Scholar 

  73. H. Xu, S. Chen, Y. Guo, J. Jiang, B. Wang, J. Xu, Z. Xue, R. Nicolas Caballero, J. Yuan, Y. Xu, J. Wang, L. Hao, J. Luo, K. Lee, J. Han, P. Jiang, Z. Shen, M. Wang, N. Wang, R. Xu, X. Wu, R. Manchester, L. Qian, X. Guan, M. Huang, C. Sun, and Y. Zhu, Res. Astron. Astrophys. 23, 075024 (2023).

    Article  ADS  Google Scholar 

  74. T. Harko, T. S. Koivisto, F. S. N. Lobo, G. J. Olmo, and D. Rubiera-Garcia, Phys. Rev. D 98, 084043 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  75. S. Bahamonde, J. Gigante Valcarcel, L. Järv, and J. Lember, J. Cosmol. Astropart. Phys. 2022(08), 082 (2022).

    Article  Google Scholar 

  76. A. Ashtekar, and P. Singh, Class. Quantum Grav. 28, 213001 (2011).

    Article  ADS  Google Scholar 

  77. Y. S. Piao, B. Feng, and X. Zhang, Phys. Rev. D 69, 103520 (2004).

    Article  ADS  Google Scholar 

  78. Y. F. Cai, T. Qiu, R. Brandenberger, Y. S. Piao, and X. Zhang, J. Cosmol. Astropart. Phys. 2008(03), 013 (2008).

    Article  Google Scholar 

  79. J. C. Hwang, and E. T. Vishniac, Astrophys. J. 382, 363 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  80. N. Deruelle, and V. F. Mukhanov, Phys. Rev. D 52, 5549 (1995).

    Article  ADS  Google Scholar 

  81. S. Vagnozzi, Mon. Not. R. Astron. Soc.-Lett. 502, L11 (2021).

    Article  ADS  Google Scholar 

  82. H. W. H. Tahara, and T. Kobayashi, Phys. Rev. D 102, 123533 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  83. S. Kuroyanagi, T. Takahashi, and S. Yokoyama, J. Cosmol. Astropart. Phys. 2021(01), 071 (2021).

    Article  Google Scholar 

  84. F. Finelli, and R. Brandenberger, Phys. Rev. D 65, 103522 (2002).

    Article  ADS  Google Scholar 

  85. Y. F. Cai, T. Qiu, J. Q. Xia, H. Li, and X. Zhang, Phys. Rev. D 79, 021303 (2009).

    Article  ADS  Google Scholar 

  86. J. Q. Xia, Y. F. Cai, H. Li, and X. Zhang, Phys. Rev. Lett. 112, 251301 (2014).

    Article  ADS  Google Scholar 

  87. E. Wilson-Ewing, J. Cosmol. Astropart. Phys. 2013(3), 026 (2013).

    Article  MathSciNet  Google Scholar 

  88. A. Ashtekar, and D. Sloan, Gen. Relativ. Gravit. 43, 3619 (2011).

    Article  ADS  Google Scholar 

  89. A. Ashtekar, and D. Sloan, Phys. Lett. B 694, 108 (2011).

    Article  ADS  Google Scholar 

  90. J. Haro, and J. Amoros, J. Cosmol. Astropart. Phys. 2014(12), 031 (2014).

    Article  Google Scholar 

  91. F. D’Ambrosio, S. D. B. Fell, L. Heisenberg, and S. Kuhn, Phys. Rev. D 105, 024042 (2022).

    Article  ADS  Google Scholar 

  92. M. Calzá, and L. Sebastiani, Eur. Phys. J. C 83, 247 (2023).

    Article  ADS  Google Scholar 

  93. W. Wang, H. Chen, and T. Katsuragawa, Phys. Rev. D 105, 024060 (2022).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taotao Qiu.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

We thank Taishi Katsuragawa for helpful discussions. Taotao Qiu and Kun Hu were supported by the National Key Research and Development Program of China (Grant No. 2021YFC2203100), and the National Natrual Science Foundation of China (Grant No. 11875141). Affiliations 1 and 2 contributed equally to this work as the first affiliation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, K., Paul, T. & Qiu, T. Tensor perturbations from bounce inflation scenario in f(Q) gravity. Sci. China Phys. Mech. Astron. 67, 220413 (2024). https://doi.org/10.1007/s11433-023-2275-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2275-0

Navigation