Skip to main content
Log in

Wormholes supported by chiral fields

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We consider static, spherically symmetric solutions of general relativity with a non-linear sigma model (NSM) as a source, i.e., a set of scalar fields Φ = (Φ1, …, Φn) (so-called chiral fields) parametrizing a target space with a metric h ab (Φ). For NSM with zero potential V (Φ), it is shown that the space-time geometry is the same as with a single scalar field but depends on h ab . If the matrix h ab is positive-definite, we obtain the Fisher metric, originally found for a canonical scalar field with positive kinetic energy; otherwise we obtain metrics corresponding to a phantom scalar field, including singular and nonsingular horizons (of infinite area) and wormholes. In particular, the Schwarzschild metric can correspond to a nontrivial chiral field configuration, which in this case has zero stress-energy. Some explicit examples of chiral field configurations are considered. Some qualitative properties of NSM configurations with nonzero potentials are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Z. Fisher, Zh. Eksp. Teor. Fiz. 18, 636 (1948); grqc/9911008.

    Google Scholar 

  2. S. V. Chervon, Nonlinear Fields in Theory of Gravitation and Cosmology (Middle-Volga Scientific Centre, Ulyanovsk State University, Ulyanovsk, 1997).

    Google Scholar 

  3. O. Bergmann and R. Leipnik, Phys. Rev. 107, 1157 (1957).

    Article  MathSciNet  ADS  Google Scholar 

  4. H. Yilmaz, Phys. Rev. 111, 1417 (1958).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. H. A. Buchdahl, Phys. Rev. 115, 1325 (1959).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. A. I. Janis, D. C. Robinson, and J. Winicour, Phys. Rev. 186, 1729 (1969).

    Article  ADS  Google Scholar 

  7. H. Ellis, J.Math. Phys. 14, 104 (1973).

    Article  ADS  Google Scholar 

  8. K. A. Bronnikov, Acta Phys. Pol. B 4, 251 (1973).

    MathSciNet  Google Scholar 

  9. M. Wyman, Phys. Rev. D 24, 839 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  10. C. Armendáriz-Picón, Phys. Rev. D 65, 104 010 (2002).

    Google Scholar 

  11. S. V. Sushkov and Y.-Z. Zhang, Phys. Rev. D 77, 024042 (2008).

    Google Scholar 

  12. A. R. Liddle and D. H. Lyth, Cosmological Inflation and Large-Scale Structure (Cambridge University Press, 2000).

  13. A. M. Perelomov, Phys. Rep. 146(3), 136 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  14. J. Schwinger, Ann. Phys. 2, 407 (1957).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. T. H. R. Skyrme, Proc. Roy. Soc. Lond. A 247(1249), 260 (1958).

    Article  ADS  Google Scholar 

  16. M. Gell-Mann and M. Levy, Nuovo Cim. 26(4), 705 (1960).

    Article  MathSciNet  Google Scholar 

  17. V. De Alfaro, S. Fubini, and G. Furlan, Nuovo Cim. A 50, 523 (1979).

    Article  ADS  Google Scholar 

  18. G. G. Ivanov, Teor. Mat. Fiz. 57, 45 (1983).

    Google Scholar 

  19. S. V. Chervon, Izv. Vuzov, Fiz. (Russ. Phys. J., New York) 26(8), 89 (1983).

    Google Scholar 

  20. S. V. Chervon, Grav. Cosmol. 1, 91 (1995).

    MATH  ADS  Google Scholar 

  21. S. V. Chervon, Grav. Cosmol. 3, 145 (1997).

    MATH  ADS  Google Scholar 

  22. V. D. Ivashchuk and V. N. Melnikov, Exact Solutions in Multidimensional Gravity with Antisymmetric Forms, Topical Review. Class. Quantum Grav. 18, R87–R152 (2001); hep-th/0110274.

    MathSciNet  Google Scholar 

  23. M. S. Morris and K. S. Thorne, Am. J. Phys. 56, 395 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  24. D. Hochberg and M. Visser, Phys. Rev. D 56, 4745 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  25. K. A. Bronnikov, M. S. Chernakova, J. C. Fabris, N. Pinto-Neto and M. E. Rodrigues, Int. J. Mod. Phys. D 17, 25 (2008); gr-qc/0609084.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. K. A. Bronnikov and S.G. Rubin, Lectures on Gravitation and Cosmology (MIFI Press, Moscow, 2008, in Russian).

    Google Scholar 

  27. S. V. Chervon, J. Astroph. Astron. 16,Suppl. 65 (1995).

  28. K. A. Bronnikov, S. B. Fadeev, and A. V. Michtchenko, Gen. Rel. Grav. 35, 505 (2003); grqc/0212065.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. S. Adler and R. B. Pearson, Phys. Rev. D 18, 2798 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  30. K. A. Bronnikov, Phys. Rev. D 64, 064013 (2001); grqc/0104092.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Bronnikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bronnikov, K.A., Chervon, S.V. & Sushkov, S.V. Wormholes supported by chiral fields. Gravit. Cosmol. 15, 241–246 (2009). https://doi.org/10.1134/S0202289309030074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289309030074

PACS numbers

Navigation