Skip to main content
Log in

Magnetic wormholes and black universes with invisible ghosts

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We construct explicit examples of globally regular static, spherically symmetric solutions in general relativity with scalar and electromagnetic fields describing traversable wormholes with flat and AdS asymptotics and regular black holes, in particular, black universes. (A black universe is a regular black hole with an expanding, asymptotically isotropic space-time beyond the horizon.) The existence of such objects requires invoking scalars with negative kinetic energy (“phantoms, ” or “ghosts”), which are not observed under usual physical conditions. To account for that, the so-called “trapped ghosts” were previously introduced, i.e., scalars whose kinetic energy is only negative in a restricted strong-field region of space-time and positive outside it. This approach leads to certain problems, including instability (as is illustrated here by derivation of an effective potential for spherical pertubations of such systems). In this paper, we use for model construction what we call “invisible ghosts, ” i.e., phantom scalar fields sufficiently rapidly decaying in the weak-field region. The resulting configurations contain different numbers of Killing horizons, from zero to four.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. R. Ade et al. (Planck Collaboration), “Planck 2015 results. XIII. Cosmological parameters,” ArXiv: 1502.01589.

  2. M. Visser, Lorentzian Wormholes: from Einstein to Hawking (AIP, Woodbury, 1995).

    Google Scholar 

  3. K. A. Bronnikov and S. G. Rubin, Black Holes, Cosmology and Extra Dimansions (World Scientific, Singapore, 2012).

    Book  Google Scholar 

  4. Francisco S. N. Lobo, “Time machines and traversable wormholes in modified theories of gravity,” EPJ Web Conf. 58, 01006 (2013); ArXiv: 1212.1006.

    Article  Google Scholar 

  5. K. A. Bronnikov and M. V. Skvortsova, “Cylindrically and axially symmetric wormholes. Throats in vacuum?,” Grav. Cosmol. 20, 171 (2014); ArXiv:1404.5750.

    Article  ADS  MATH  Google Scholar 

  6. D. Hochberg and M. Visser, Phys. Rev. D 56, 4745 (1997); gr-qc/9704082.

    Article  ADS  MathSciNet  Google Scholar 

  7. K. A. Bronnikov and J. C. Fabris, “Regular phantom black holes,” Phys. Rev. Lett. 96, 251101 (2006); grqc/0511109.

    Article  ADS  MathSciNet  Google Scholar 

  8. K. A. Bronnikov, V. N. Melnikov, and H. Dehnen, “Regular black holes and black universes,” Gen. Rel. Grav. 39, 973 (2007); gr-qc/0611022.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. K. A. Bronnikov and S. V. Sushkov, “Trapped ghosts: a new class of wormholes,” Class. Quantum Grav. 27, 095022 (2010); ArXiv: 1001.3511.

    Article  ADS  MathSciNet  Google Scholar 

  10. K. A. Bronnikov and E. V. Donskoy, “Black universes with trapped ghosts,” Grav. Cosmol. 17, 176 (2011); ArXiv: 1110.6030.

    Article  ADS  MATH  Google Scholar 

  11. K. A. Bronnikov, E. V. Donskoy, and P. A. Korolev, “Magnetic wormholes and black universes with trapped ghosts,” Vestnik RUDN No. 2, 139 (2013).

    Google Scholar 

  12. S.V. Bolokhov, K. A. Bronnikov, and M. V. Skvortsova, “Magnetic black universes and wormholes with a phantom scalar,” Class. Quantum Grav. 29, 245006 (2012); ArXiv: 1208.4619.

    Article  ADS  MathSciNet  Google Scholar 

  13. J. A. Wheeler, “Geons,” Phys. Rev. 97, 511 (1955).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. R. Poltis and D. Stojkovic, “Can primordial magnetic fields seeded by electroweak strings cause an alignment of quasar axes on cosmological scales?,” Phys. Rev. Lett. 105, 161301 (2010); arXiv: 1004.2704.

    Article  ADS  Google Scholar 

  15. M. S. Morris and K. S. Thorne, “Wormholes in spacetime and their use for interstellar travel: a tool for teaching General Relativity,” Am. J. Phys. 56, 395 (1988).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. K. A. Bronnikov and A. V. Khodunov, “Scalar field and gravitational instability,” Gen. Rel. Grav. 11, 13 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  17. K. A. Bronnikov and Yu. N. Kireyev, “Instability of black holes with scalar charge,” Phys. Lett. A 67, 95 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  18. K. A. Bronnikov, J. C. Fabris, and A. Zhidenko, “On the stability of scalar-vacuum space-times,” Euro Phys. J. C 71, 1791 (2011); Arxiv: 1109.6576.

    Article  ADS  Google Scholar 

  19. K. A. Bronnikov, C. P. Constantinidis, R. Evangelista, and J. C. Fabris, “Electrically charged cold black holes in scalar-tensor theory,” Int. J. Mod. Phys. D 8, 481 (1999); gr-qc/9903028.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. K. A. Bronnikov and S. V. Grinyok, “Conformal continuations and wormhole instability in scalartensor gravity,” Grav. Cosmol. 10, 237 (2004); grqc/0411063.

    ADS  MATH  MathSciNet  Google Scholar 

  21. K. A. Bronnikov and S. V. Grinyok, “Electrically charged and neutral wormhole instability in scalartensor gravity,” Grav. Cosmol. 11, 75 (2005); grqc/0509062.

    ADS  MATH  Google Scholar 

  22. J. A. Gonzalez, F. S. Guzman, and O. Sarbach, “Instability of wormholes supported by a ghost scalar field. I. Linear stability analysis,” Class. Quantum Grav. 26, 015010 (2009); Arxiv: 0806.0608.

    Article  ADS  MathSciNet  Google Scholar 

  23. K. A. Bronnikov, R. A. Konoplya, and A. Zhidenko, “Instability of wormholes and regular black holes supported by a phantom scalar field,” Phys. Rev. D 86, 024028 (2012); ArXiv: 1205.2224.

    Article  ADS  Google Scholar 

  24. K. A. Bronnikov, L. N. Lipatova, I. D. Novikov, and A. A. Shatskiy, “Example of a stable wormhole in general relativity,” Grav. Cosmol. 19, 269 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  25. K. A. Bronnikov, “Scalar-tensor theory and scalar charge,” Acta Phys. Pol. B4, 251 (1973).

    MathSciNet  Google Scholar 

  26. H. Ellis, “Ether flow through a drainhole: A particle model in general relativity,” J. Math. Phys. 14, 104 (1973).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Bronnikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bronnikov, K.A., Korolyov, P.A. Magnetic wormholes and black universes with invisible ghosts. Gravit. Cosmol. 21, 157–165 (2015). https://doi.org/10.1134/S0202289315020024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289315020024

Keywords

Navigation