Skip to main content
Log in

Dynamics of multiparticle systems on the symplectic extension of the Schwarzschild space-time manifold

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

Methods of extension of the Schwarzschild metrics to the 8D symplectic phase manifold are considered. The method used is based on Sasaki’s metric of the tangent bundle over the pseudo-Riemannian 4D space-time manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Frolov and I. D. Novikov, Black Holes: Basic Concepts and New Developments (Birkhauser, New York-Boston-Heidelberg, 1997).

    Google Scholar 

  2. J. Stewart, Advanced General Relativity (Cambridge University Press, Cambridge, 1996).

    Google Scholar 

  3. L. P. Hugston and K. P. Tod, An Introduction to General Relativity (Cambridge University Press, Cambridge, 1994).

    Google Scholar 

  4. M. Ludvigsen, General Relativity. A Geometric Approach (Cambridge University Press, Cambridge, 1999).

    Book  MATH  Google Scholar 

  5. R. K. Sachs and H. Wu, General Relativity for Mathematicians (Springer-Verlag, New York-Heidelberg-Berlin, 1977).

    MATH  Google Scholar 

  6. N. Straumann, General Relativity and Relativistic Astrophysics (Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1984).

    Google Scholar 

  7. F. De Felicem and C. J. S. Clarke, Relativity on Curved Manifolds (Cambridge University Press, Cambridge, 1990).

    Google Scholar 

  8. B. S. De Witt, Phys. Rep. 19, 295 (1975).

    Article  ADS  Google Scholar 

  9. N. D. Birrell and P. C. W. Davies, Quantum Field in Curved Space (Cambridge University Press, Cambridge, 1982).

    Google Scholar 

  10. H. Stephani, Relativity: An Introduction to Special and General Relativity (Cambridge University Press, Cambridge, 2004).

    Book  Google Scholar 

  11. J. Karkowski, E. Malec, and Z. Swierczynski, Schwarzschild Black Holes and Propagation of Electromagnetic and Gravitational Waves, grqc/0204086.

  12. J. Tian, Ya. Gui, G. Guo, S. Zhang, and W. Wang, The Real Scalar Field in Schwarzschild — de Sitter Spacetime, gr-qc/0304009.

  13. K. D. Kokkotas and B. G. Schmidt, Quasi-Normal Modes of Stars and Black Holes, gr-qc/9909058.

  14. J. Ehlers and R. Geroch, Equation of Motion of Small Bodies in Relativity, gr-qc/0309074.

  15. S. Hayward, Phys. Rev. D 49, (1994).

  16. T. K. Das, Behavior of Matter Close to the Event Horizon, astro-ph/0312548.

  17. R. Narayan, R. Mahadevan, and E. Quataert, in: Proc. Reykjavic Symp. on Non-Linear Phenomena in Accretion Disks around Black Holes, Ed. by M. Abramowicz, G. Bjornsson, and J. Pringle (Reykjavik, 1997).

  18. N. E. Bjerrum-Bohr, J. F. Donoghue, and B. R. Holstein, Phys. Rev. D 67, 084033-1 (2003).

    Google Scholar 

  19. A. N. Petrov and J. Katz, Proc.Roy. Soc. London 458, 319 (2002).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. G. Kälbermann, Diffraction of Wave Packet in Space and Time, quant-ph/0008077.

  21. G.’ t Hooft, The ScatteringMatrix Approach for the Quantum Black Hole, gr-qc/9607022.

  22. C. P. Burgess, Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory, http://relativity.livingreviews.org/lrr-2004-5 (2004).

  23. S. Liberati, Quantum Vacuum Effects in Gravitational Fields: Theory and Detectability, PhD Thesis (International School for Advanced Studies, Trieste, Italy, 2000).

    Google Scholar 

  24. M. Heusler, Stationary Black Holes: Uniqueness and Beyond, ITP, University of Zurich, http://wwwtheorie.physik.unizh.ch/heusler (1998).

  25. H. E. Brandt, Chaos, Solitons, and Fractals 10, 267 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  26. H. E. Brandt, Found. of Physics Lett. 13, 307 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  27. H. E. Brandt, Found. of Physics Lett. 5, 221 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  28. E. R. Caianiello, Nuovo Cim. B 59, 350 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  29. E. R. Caianiello, Lett. Nuovo Cim. 32, 65 (1981).

    Article  MathSciNet  Google Scholar 

  30. E. R. Caianiello, Rivista del Nuovo Cimento 15, 432 (1992).

    Article  MathSciNet  Google Scholar 

  31. G. S. Asanov, Finsler Geometry, Relativity, and Gauge Theories (Reidel, 1985).

  32. G. S. Asanov and S. F. Ponomarenko, AFinslerBundle over Space-Time, Associated Gauge Fields and Connections (Shtiintsa, Kishinev, 1989, in Russian).

    Google Scholar 

  33. D. Bao, S. S. Chern, and Z. Shen, An Introduction to Riemann-Finsler Geometry (Springer, Berlin-Heidelberg, 1999).

    Google Scholar 

  34. K. Yano and S. Ishihara, Tangent and Cotangent Bundles (New York, Marcel Dekker Inc., 1973).

    MATH  Google Scholar 

  35. V. G. Bagrov, G. S. Bisnovatyi-Kogan, V. A. Bordovitsyn, et al., Relativistic Particles’ Radiation Theory (Fizmatlit, Moscow, 2002, in Russian).

    Google Scholar 

  36. A. Kawaguchi, Transactions of the A. M. S. 44, 158 (1938).

    MathSciNet  Google Scholar 

  37. S. Sasaki, Tohoku Math. J. 10, 338 (1958).

    Article  MATH  MathSciNet  Google Scholar 

  38. R. C. Tolman, Proc. Nat. Acad. Sci. US 20, 169 (1934).

    Article  ADS  Google Scholar 

  39. J. R. Oppenheimer and H. Snyder, Phys. Rev. 56, 455 (1939).

    Article  MATH  ADS  Google Scholar 

  40. C. Hellaby and K. Lake, Astroph. J. 290, 381 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  41. C. J. S. Clarke and N. O’Donnell, Rend. Sem. Mat. Univ. Pol. Torino 50, 39 (1992).

    MATH  MathSciNet  Google Scholar 

  42. C. Hellaby, Some Properties of Singularities in the Tolman Model, PhD Thesis (Queen’s University of Ontario, Kingston, Canada, 1985).

    Google Scholar 

  43. L. D. Landau and E.M. Lifshitz, Classical Theory of Fields (Fizmatlit, Moscow, 2001, in Russian).

    Google Scholar 

  44. S. Lang, Introduction to Differentiable Manifolds (2nd edition, Springer-Verlag, New York, 2002).

    MATH  Google Scholar 

  45. Ya. B. Zeldovich and L. P. Grishchuk, Mon. Not. Roy. Astron. Soc. 207, 23 (1984).

    ADS  Google Scholar 

  46. J. L. Synge, Relativity: The Special Theory (North-Holland Publishing Company, Amsterdam, 1956).

    MATH  Google Scholar 

  47. J. L. Synge, Relativity: TheGeneral Theory (North-Holland Publishing Company, Amsterdam, 1960).

    Google Scholar 

  48. S. R. de Groot, W. A. van Leeuwen, and Gh. G. van Weert, Relativistic Kinetic Theory: Principles and Applications (North-Holland Publishing Company, Amsterdam-New York-Oxford, 1980).

    Google Scholar 

  49. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).

    MATH  Google Scholar 

  50. D. V. Gal’tsov, Phys. Rev. D 66, 025016 (2002).

    Google Scholar 

  51. D. V. Gal’tsov and P. A. Spirin, Grav. Cosmol. 12, 1 (2006).

    MATH  MathSciNet  ADS  Google Scholar 

  52. D. V. Gal’tsov and P. A. Spirin, Grav. Cosmol. 13, 241 (2007).

    MATH  MathSciNet  ADS  Google Scholar 

  53. E. Poisson, The Motion of Point Particles in the Curved Spacetime, Living Rev. Relativity 7, http://www.livingreviews.org/lrr-2004-6 (2004).

  54. Y. Mino, M. Sasaki, and T. Tanaki, Phys. Rev. D 55, 3457 (1997).

    Article  ADS  Google Scholar 

  55. T. C. Quinn and R. M. Wald, Phys. Rev. D 56, 3381 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  56. W. Hikida, H. Nakano, and M. Sasaki, Self-Force Regularization in the Schwarzschild Spacetime, gr-qc/0411150.

  57. C.W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (W.H. Freeman and Company, San Francisco, 1973).

    Google Scholar 

  58. R. Miron, D. Hrimiuc, H. Shimada, and S. Sabau, The Geometry of Hamilton and Lagrange Spaces (Kluwer Academic Publishers, New York-Boston-Dordrecht-London-Moscow, 2002).

    Google Scholar 

  59. R. Miron and M. Anastaiei, The Geometry of Lagrange Spaces: Theory and Applications (Kluwer Academic Publishers, New York-Boston-London, 1994).

    MATH  Google Scholar 

  60. A. Sandovici, Rend. Sem. Mat. Univ. Pol. Torino 63, 255 (2005).

    MATH  MathSciNet  Google Scholar 

  61. S. Capozziello, A. Feoli, G. Lambiase, G. Papini, and G. Scarpetta, Massive Scalar Particles in a Modified Schwarzschild Geometry, gr-qc/0003087.

  62. M. Crasmareanu, Novi Sad J.Math. 33, 11 (2003).

    MATH  MathSciNet  Google Scholar 

  63. D. Husemoller, Fibre Bundles (MvGraw-Hill Book Company, New York-St. Louis-San Francisco, 1966).

    MATH  Google Scholar 

  64. J. D. Bekenstein, The Relation between Physical and Gravitational Geometry, preprintUCSB-TH-92-41 (November 1992).

  65. D. McDuff and D. Salamon, Introduction to Symplectic Topology (Clarendon Press, Oxford, 1998).

    MATH  Google Scholar 

  66. I. Bucataru, Metric Nonlinear Connections, math.DG/0412109.

  67. M. Crampin, J. London Math. Soc. 2, 178 (1971).

    Article  MathSciNet  Google Scholar 

  68. J. Grifone, Ann. Inst. H. Poincaré 22, 287 (1972); 22, 291 (1972).

    MATH  MathSciNet  Google Scholar 

  69. Yu. N. Orlov, Fundamentals of Quantization of Degenerate Dynamic Systems (MFTI, Moscow, 2004).

    Google Scholar 

  70. G. C. McVittie, General Relativity and Cosmology (Chapman and Hall Ltd., London, 1956).

    Google Scholar 

  71. I. Bucataru, Some Basic Properties of Lagrangians, math.DG/0507560.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Fimin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fimin, N.N. Dynamics of multiparticle systems on the symplectic extension of the Schwarzschild space-time manifold. Gravit. Cosmol. 15, 224–233 (2009). https://doi.org/10.1134/S0202289309030050

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289309030050

PACS numbers

Navigation