Skip to main content
Log in

Experience in Numerical Hydrodynamic Simulation of Long River Reaches

  • MATHEMATICAL MODELS IN SOLVING PROBLEMS OF LAND HYDROLOGY
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

The article formulates the main requirements to numerical algorithms for hydrodynamic 2D-modeling of long and very long river segments with lengths of up to several thousand kilometers. The main feature is the use of adaptive unstructured mesh along with algorithms that give correct values of water surface elevations on coarse mesh, taking into account abrupt changes of bed elevations. A hydrodynamic model of a segment of the Amur R. with a total length of >3 thous. km is presented, which is based on a numerical solution of two-dimensional shallow-water equations (Saint-Venant) by a new high-accuracy algorithm, taking into account road and protection structures in the floodplain. The stages of model construction and verification are described, and the results of calculations for an extraordinary flood in 2013 and a high flood in 2020 are given. Water levels (with estimates of their errors) and the rates of water discharge at gages are given along with flow fields and the inundation zones of floodplain areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Alabyan, A.M., Vasilenko, A.N., Demidenko, N.A., Krylenko, I.N., Panchenko, E.D., and Popryadukhin, A.A., Tidal water dynamics in the Pechora R. delta during summer low-water season, Vestn. Mosk. Univ., Ser. 5, Geografiya, 2022, no. 1. pp. 167–179.

  2. Alabyan, A.M., Krylenko, I.N., Lebedeva, S.V., Panchenko, E.D., World experience in numerical simulation of flow dynamics at river mouths, Water Resour., 2022, vol. 49, no. 5, pp. 766–780.

    Article  Google Scholar 

  3. US Satellite for Earth Surface Observations, Controlled by US Geological Survey (USGS). https://earthexplorer.usgs.gov/.

  4. Belikov, V.V., Vychislitel’nyi kompleks “TRIANA” – generator setok treugol’nykh konechnykh elementov v proizvol’nykh ploskikh oblastyakh (TRIANA Computation System—A Generator of Grids of Triangular Finite Elements in Arbitrary Two-Dimensional Domains), Moscow: GosFAP SSSR, P007705, 1984.

  5. Belikov, V.V. and Aleksyuk, A.I., Modeli melkoi vody v zadachakh rechnoi gidrodinamiki (Shallow-Water Models in Problems of River Hydraulics), Moscow: RAN, 2020.

  6. Belikov, V.V., Aleksyuk, A.I., Borisova, N.M., Glotko, A.V., and Rumyantsev, A.B., Estimation of the level of floodplain inundation in the Lower Don under the effect of economic activity. Retrospective hydrodynamic modeling, Water Resour., 2022, vol. 49, no. 6, pp. 941–950.

    Article  Google Scholar 

  7. Belikov, V.V., Borisova, N.M., Rumyantsev, A.B., and Bugaets, A.N., Numerical hydrodynamic model of discharge–tidal currents in the Amur Liman, Sb. nauch. tr. Vseros. konf. “Vodnye resursy: novye vyzovy i puti resheniya” (Proc. Russ. Conf. “Water Resources: New Challenges and Ways to Solution”), Novocherkassk: Lik, 2017, pp. 480–485.

  8. Belikov, V.V. and Glotko, A.V., Computer simulation of flood and dry-season currents in the Cheboksary Reservoir with the use of various numerical methods, Prirodoobustroistvo i ratsional’noe prirodopol’zovanie–neobkhodimye usloviya sotsial’no-ekonomicheskogo razvitiya Rossii. Sb. nauch. tr. (Nature Development and Rational Nature Use as Necessary Conditions for the Socioeconomic Development of Russia. Coll. Sci. Pap.), Ch. I. M.: MGUP, 2005, pp. 204–210.

  9. Belikov, V.V., Zaitsev A.A., Zernov A.V., et al., A hydrodynamic mode of the Neva R., Tr. mezhdunarod. nauch.-prakt. konf. “Bezopasnost’ rechnykh sudokhodnykh gidrotekhnicheskikh sooruzhenii” (Proc. Intern. Sci.-Pract. Conf. “Safety of River Navigational Hydroengineering Structures”), Book I, SPb., 2008, pp. 155–174.

  10. Belikov, V.V., Kolesnikov, Yu.M., and Ivanenko, S.A., Mathematical modeling of spring flood passing through the urban reach of the Moskva River, Water Resour., 2001, vol. 28, no. 5, pp. 516–522.

    Article  Google Scholar 

  11. Belikov, V.V. and Militeev, A.N., A two-layer mathematical model of catastrophic floods, Vychisl. Tekhnol., 1992, vol. 1, no. 3, pp. 167–174.

    Google Scholar 

  12. Belikov, V.V. and Militeev, A.N., A numerical model of marine setups in near-mouth river reaches, Sb. nauch. tr. KaGU (Coll. Sci. Papers of KaSU), Kaliningrad, 1993, pp. 15–23.

  13. Belikov, V.V., Tret’yukhina (Vasil’eva), E.S., Kochetkov, V.V., Zaitsev, A.A., Savel’ev, R.A., and Sosunov, I.V., Computer simulation of a catastrophic jam flood near Lensk, BES, Iss. 12, Moscow: NIIES, 2004, pp. 220–249.

    Google Scholar 

  14. Kalugin, A.S. and Motovilov, Yu.G., Runoff formation model for the Amur River basin, Water Resour., 2018, vol. 45, no. 2, pp. 149–159.

    Article  Google Scholar 

  15. Kyunzh, Zh.A., Kholli, F.M., and Vervei, A., Chislennye metody v zadachakh rechnoi gidravliki (Numerical Methods in River Hydraulic Problems), Moscow: Energoatomizdat, 1985.

  16. Lebedeva, S.V., Alabyan, A.M., Krylenko, I.N., and Fedorova, T.A., Floods at Northern Dvina mouth and their simulation, Georisk, 2015, no. 1, pp. 18–25.

  17. Motovilov, Yu.G., Danilov-Danil’yan, V.I., Dod, E.V., and Kalugin, A.S., Assessing the flood control effect of the existing and projected reservoirs in the Middle Amur Basin by physically-based hydrological models, Water Resour., 2015, vol. 42, no. 5, pp. 580–593.

    Article  Google Scholar 

  18. Nerov, I.O., Krasnopeev, S.M., Bugaets, A.N., Belikov, V.V., Glotko, A.V., Borisova, N.M., Vasil’eva, E.S., Krolevetskaya, Yu.V., Experience in the development of digital elevation model for hydrodynamic calculations in the Amur R. basin, Vestn. DVO RAN, 2021, no. 6, vol. 220, pp. 45–55.

    Google Scholar 

  19. NTs OMZ. Kosmicheskie apparaty tipa Kanopus-B (Space Apparatuses of Kanopus-V Type). http:// www.ntsomz.ru/ks_dzz/satellites/kanopus_vulkan.

  20. NTs OMZ. Kosmicheskie apparaty tipa Resurs-P (Space Apparatuses of Resurs-P Type). http://www.ntsomz.ru/ks_dzz/satellites/resurs_p.

  21. ArcGIS Online Project (USA). https://www.arcgiscom/ home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9; Airbus Defense and Space (France). WorldDEM™—The New Standard of Global Elevation Models. Elevation Models. https://www.intelligence-airbusds. com/ imagery/reference-layers/worlddem/worlddem-thematic-layers-and-derivatives/.

  22. Rumyantsev, A.B. and Belikov, V.V., Assessing the risk of the impact of extreme hydrometeorological phenomena and technogenic floods on higher hazard facilities, Sb. nauch. tr. Vseros. nauch. konf. “Nauchnoe obespechenie realizatsii "Vodnoi strategii Rossiiskoi Federatsii na period do 2020 g.” (Coll. Sci. Pap. Russ. Sci. Conf. “Scientific Base for the Implementation of the “Water Strategy of the Russian Federation for the Period up to 2020”), Petrozavodsk, 2015, vol. 2, pp. 38–44.

  23. Svid. 2014612182 ob ofitsial’noi registratsii programmy dlya EVM Programmnyi kompleks dlya rascheta techenii, deformatsii dna i perenosa zagryaznenii v protyazhennoi i razvetvlennoi sisteme rusel (RIVER_1D) (Certificate 2014612182 of Official Registration of a Computer Software System for Calculating Currents, Bed Deformations and Pollutant Transport in an Extended and Branching System of Channels (RIVER_1D)), Belikov, V.V. and Kochetkov, V.V., no. 2013619720. 2014. Computer Program Register.

  24. Svid. 2002610941 ob ofitsial’noi registratsii programmy dlya EVM. Kompleks programm dlya rascheta rechnykh techenii (FLOOD) (Certificate 2002610941 of Official Registration of a Software System for Calculating River Flows (FLOOD), Belikov, V.V. and Militeev, A.N., no. 200610689. 2002, Computer Program Register.

  25. Svid. 2001610638 ob ofitsial’noi registratsii programmy dlya EVM. Kompleks programm dlya rascheta voln proryva (BOR) (Certificate 2001610638 of Official Registration of a Software System for Calculating Breakthrough Waves (BOR)). Belikov, V.V., Militeev, A.N., and Kochetkov, V.V., no.  2001610454. 2001. Computer Program Register.

  26. Svid. 2017660266 o gosudarstvennoi registratsii programm dlya EVM. Programmnyi kompleks STREAM 2D CUDA dlya rascheta techenii, deformatsii dna i perenosa zagryaznenii v otkrytykh potokakh s ispol’zovaniem tekhnologii Compute Unified Device Architecture (na graficheskikh protsessorakh NVIDIA) (Certificate 2017660266 of Official Registration of a Software System STREAM 2D CUDA for Calculating Currents, Bed Deformations, and Pollutant Transport in Open Streams with the Use of Technologies Compute Unified Device Architecture (on NVIDIA Graphic Processors). Aleksyuk, A.I., Belikov, V.V., no. 2020619746. 2020. Computer Program Register.

  27. Svid. 2020660617 o gosudarstvennoi registratsii programmy dlya EVM. Reshatel’ zadachi Rimana dlya uravnenii melkoi vody s razryvnym dnom (Certificate 2020660617 of Official Registration of a Software Code. Riemann Problem Solver for Shallow-Water Equations with a Discontinuous Bed). Aleksyuk A.I., Malakhov M.A., Belikov V.V. no.  2020619746. 2020. Computer Program Register.

  28. Barros, M.L.C., Brito, D.C., Teixeira, M.R., and Cunha, A.C., Hydrodynamic modeling and simulation of water residence time in the estuary of the Lower Amazon River, Water, 2020, vol. 12, no. 3, p. 660. https://doi.org/10.3390/w12030660

    Article  Google Scholar 

  29. Alabyan, A.M. and Lebedeva, S.V., Flow dynamics in large tidal delta of the Northern Dvina River: 2D simulation, J. Hydroinformatics, 2018, vol. 20, no. 4, pp. 798–814. https://doi.org/10.2166/hydro.2018.051

    Article  Google Scholar 

  30. Aleksyuk, A.I. and Belikov, V.V., The uniqueness of the exact solution of the Riemann problem for the shallow water equations with discontinuous bottom, J. Comp. Phys., 2019, vol. 390, pp. 232–248.

    Article  Google Scholar 

  31. Aleksyuk, A.I., Malakhov, M.A., and Belikov, V.V., The exact Riemann solver for the shallow water equations with a discontinuous bottom, J. Comp. Phys., 2022, vol. 450, p. 110801.

    Article  Google Scholar 

  32. Belikov, V.V., Aleksyuk, A.I., Borisova, N.M., Vasilieva, E.S., Norin, S.V., and Rumyantsev, A.B., Justification of hydrological safety conditions in residential areas using numerical modelling, Wat. Res., 2018, vol. 45, no. Suppl. 1, pp. S39–S49.

  33. Belikov, V.V., Borisova, N.M., Aleksyuk, A.I., Rumyantsev, A.B., Glotko, A.V., and Shurukhin, L.A., Hydraulic substantiation of the Bagaevskaya hydro complex project based on numerical hydrodynamic modeling, Power Technol. Eng., 2018, vol. 52, no. 4, pp. 372–388.

    Article  Google Scholar 

  34. Glotko, A.V., Aleksyuk, A.I., Borisova, N.M., Vasil’eva, E.S., Fedorova, T.A., Krasnopeev, S.M., Nerov, I.O., and Belikov, V.V., A numerical hydrodynamic 2D model of the Amur and Zeya Rivers and the Amur Liman, 4th Int. Conf. Status Future WORLDs LARGE RIVERS, Moscow: VGU, 2021, pp. 230–231.

  35. Goutal, N. and Maurel, F., Proceedings of the 2nd workshop on dam-break wave simulation, Electricite de France. Direction des etudes et recherches, 1997.

  36. Kornilova, E.D., Morozova, E.A., Krylenko, I.N., Fingert, E.A., Golovlyov, P.P., Zavadsky, A.S., and Belikov, V.V., Study of channel changes in the Lena River near Yakutsk based on long-term data, satellite images and two-dimensional hydrodynamic model, Climate Change Impacts on Hydrological Processes and Sediment Dynamics: Measurement, Modelling and Management, Chalov, S., Golosov, V., Li, R., and Tsyplenkov, A., Eds., Cham: Springer Int. Publ., 2019, pp. 104–109.

    Google Scholar 

  37. Krylenko, I.N., Belikov, V.V., Fingert, E., Golovlyov, P.P., Glotko, A.V., Zavadskii, A.S., Samokhin, M.A., and Borovkov, S., Analysis of the impact of hydrotechnical construction on the Amur River near Blagoveshchensk and Heihe cities using a two-dimensional hydrodynamic model, Water Resour., 2018, vol. 45, no. Suppl. 1, pp. S112–S121.

  38. Tong, C., Lee, D.-Y., Zheng, J., Shen, J., Zhang, W., and Yan, Y., Propagation of tidal waves up in Yangtze estuary during the dry season, J. Geophysic. Res. Oceans, 2015, vol. 120, no. 9, pp. 6445–6473.

    Article  Google Scholar 

Download references

Funding

The study was carried out under Governmental Order to Water Problems Institute, Russian Academy of Sciences, subject FMWZ-2022-0003 “Developing Numerical Models of Hydrological, Hydrodynamic, and Hydrochemical Processes in Water Bodies and their Drainage Basins; the Use of These Models to Develop Decision Support Technologies in the Field of Water Safety for Information Modernization of the Water Management Branch in Russia.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Belikov or E. S. Vasil’eva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belikov, V.V., Aleksyuk, A.I., Borisova, N.M. et al. Experience in Numerical Hydrodynamic Simulation of Long River Reaches. Water Resour 50, 465–481 (2023). https://doi.org/10.1134/S0097807823040036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807823040036

Keywords:

Navigation