Skip to main content
Log in

Streamflow of Russian Rivers under Current and Forecasted Climate Changes: A Review of Publications. 1. Assessment of Changes in the Water Regime of Russian Rivers by Observation Data

  • WATER RESOURCES AND THE REGIME OF WATER BODIES
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

Publications on changes in river water regime in Russia under the conditions of current climate changes are reviewed. Most recent generalizations of such publications are presented in Roshydromet evaluation reports. The publication of these basic studies followed by many studies improving the conclusions of national reports. The objective of this review is to generalize the current concepts regarding the effect of climate changes in Russian Federation territory on the mean annual and maximal river runoff, primarily, based on most recent publications and the authors’ own studies. New maps, developed by the authors, are given to characterize variations of the annual and maximal runoff, including the dates of the disturbance of the stationary character of the series based on data up to 2019. Considerable attention is paid to statistical analysis of the revealed changes. The annual runoff on the average for the Russian territory is shown to tend to increase in the recent decades because of an increase in the moistening of the territory. However, the changes in the majority of the analyzed basins are statistically insignificant. The average annual runoff of rivers into the Arctic seas from the territory of Siberia and Far East has also slightly increased. Changes in the maximal runoff are more pronounced and differently directed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Aksyanov, T.M., Applying the method of channel water balances to analyze the reliability of estimation and coordination of Samur River runoff, Vod. Khoz. Rossii, 2016, no. 3, pp. 4–14.

  2. Alekseev, L.P., Georgievskii, V.Yu., and Anikanova, M.N., et al., Analysis of the current state of Lake Baikal based on Roshydromet monitoring data, Russ. Meteorol. Hydrol., 2019, no. 10, pp. 643–651.

  3. Alekseevskii, N.I., Magritskii, D.V., and Mikhailov, V.N., Anthropogenic and natural changes in the hydrological limitations on nature development in river deltas of the Russian Arctic, 2015, no. 1, pp. 14–31.

  4. Alekseevskii, N.I. and Yumina, N.M., Long-term variations of maximal water levels in the Lower Amur, Water Resour., 2018, vol. 45, no. 1, pp. 1–11.

    Article  Google Scholar 

  5. Antokhina, O.Yu., Antokhin, P.N., Devyatova, E.V., et al., Dynamic processes in the atmosphere governing the anomalies of precipitation in East Siberia and Mongolia in summer, Fundam. Prikl. Klimatol., 2018, vol. 1, pp. 10–27.

    Google Scholar 

  6. Bogutskaya, E.M., Kositskii, A.G., Aibulatov, D.N., et al., Mean long-term runoff in rivers in southwestern Crimean Peninsula, Vod. Khoz. Rossii. Probl., Tekhnol., Upravl., 2020, no. 2, pp. 37–51.

  7. Vasilevskaya, L.N. and Stochkute, Yu.V., Analysis of long-term variations in atmospheric precipitation and snow cover thickness in Northeastern Russia over 1966–2014, Uch. Zap., Kazan. Gos. Univ., Ser. Estest. Nauki, 2017, vol. 159, no. 4, pp. 681–699.

    Google Scholar 

  8. Vodnye resursy Rossii i ikh ispol’zovanie (Water Resources of Russia and Their Use), Shiklomanov, I.A, Ed., St. Petersburg: GGI, 2008.

  9. Vtoroi otsenochnyi doklad Rosgidrometa ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiiskoi Federatsii (Second Appraisal Report of Roshydromet on Climate Changes and Their Effect in RF Territory), Moscow: Rosgidromet, 1008.

  10. Gel'fan, A.N., et al., Effect of climate changes on the annual and maximal runoff of Russian rivers: assessment and forecast, Fundam. Prikl. Klimatol., 2021, vol. 7, no. 1, pp. 36–79.

    Google Scholar 

  11. Georgiadi, A.G. and Kashutina, E.A., Long-term runoff variations in largest Siberian rivers, Izv. Akad. Nauk, Ser. Geogr., 2017, no. 5, pp. 70–81.

  12. Georgiadi, A.G., Koronkevich, N.I., Milyukova, I.P., et al., Current and scenario changes in Volga and Don runoff, Vod. Khoz. Ross., 2017, no. 3, pp. 6–23.

  13. Georgiadi, A.G., Milyukova, I.P., and Kashutina, E.A., Contemporary and scenario changes in river runoff in the Don Basin, Water Resour., 2020, vol. 47, no. 6, pp. 913–923.

    Article  Google Scholar 

  14. Georgievskii, V.Yu., Georgievskii, M.V., Golovanov, O.F., et al., Continental water systems, in Vtoroi otsenochnyi doklad Rosgidrometa ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiiskoi Federatsii (Second Appraisal Report of Roshydromet on Climate Changes and Their Effect in RF Territory), Chap. 4.1, Moscow: Rosgidromet, 2014, pp. 350–361.

  15. Georgievskii, V.Yu., Grek, E.A., Grek, E.N., et al., Assessment of modern changes in maximum river flow in Russia, Russ. Meteorol. Hydrol., 2019, no. 11, pp. 739–745.

  16. Georgievskii, V.Yu. and Shalygin, A.L., Hydrological regime and water resources, in Metody otsenki posledstvii izmeneniya klimata dlya fizicheskikh i biologicheskikh system (Methods for Estimating the Effect of Climate Changes for Physical and Biological Systems), Ch. 2, Moscow: Rosgidromet, 2012, pp. 53–86.

  17. Georgievskii, M.V. and Golovanov, O.F., Forecast estimates of changes in water resources in largest rivers of the Russian Federation based on data on water flow in CMIP5 project, Vestn. St.-Peterb. Univ., Nauki Zemle, 2019, vol. 64, no. 2, pp. 206–218.

    Google Scholar 

  18. Geoekologicheskoe sostoyanie arkticheskogo poberezh’ya Rossii i bezopasnost’ prirodopol’zovaniya (Geoecological Conditions of the Russian Arctic Coast and Safety of Nature Development), Alekseevskii, N.I, Ed., Moscow: GEOS, 2007.

  19. Govorushko, S.M. and Gorbatenko, L.V., Transboundary water use in the Amur Basin, Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, 2013, no. 2, pp. 1–10.

  20. Gorin, S.L., Koval’, M.V., Sazonov, A.A., et al., Modern hydrological regime of the lower reaches of the Penzhina R. and first data on the hydrological processes in its estuary: data of 2014 expedition, Issled. Vodn. Biol. Res. Kamchatki i Severo-Zap. Chasti Tikhogo Okeana, 2015, no. 37, pp. 33–53.

  21. Grigor’ev, V.Yu., Millionshchikova, T.D., Sazonov, A.A., et al., Assessing the effect of changes in climate parameters on river runoff in Baikal basin in the late XX–early XXI centuries, Vestn. Mosk. Gos. Univ., Ser. 5, Geogr., 2020, no. 5, pp. 3–11.

  22. Grigor’ev, V.Yu., Frolova, N.L., and Dzhamalov, R.G., Changes in water budget of large river basins in European Russia, Vod. Khoz. Ross.: Probl., Tekhnol., Upravl., 2018, no. 4, pp. 36–47.

  23. Dzhamalov, R.G., Frolova, N.L., Bugrov, A.A., et al., Atlas vozobnovlyaemykh vodnykh resursov Evropeiskoi chasti Rossii (Atlas of Renewable Water Resources in European Russia), Moscow: Inst. Vod. Probl. Ross. Akad. Nauk, 2014.

  24. Dzhamalov, R.G., Frolova, N.L., Kireeva, M.B., et al., Sovremennye resursy podzemnykh i poverkhnostnykh vod Evropeiskoi chasti Rossii: Formirovanie, raspredelenie, ispol’zovanie (Current Groundwater and Surface Water Resources of European Russia: Formation, Distribution, and Use), Moscow: GEOS, 2015.

  25. Dmitrieva, V.A. and Buchik, S.V., Genesis of water abundance peaks in rivers and water regime variations in the current climatic period, Vod. Khoz. Ross.: Probl., Tekhnol., Upravl., 2016, no. 5, pp. 50–57.

  26. Doklad o klimaticheskikh riskakh na territorii Rossiiskoi Federatsii (Report on Climatic Risks in Russian Federation Territory), St. Petersburg, 2017.

  27. Izmenenie klimata i ego vozdeistvie na ekosistemy, naselenie i khozyaistvo rossiiskoi chasti Altae-Sayanskogo ekoregiona: otsenochnyi doklad (Climate Change and its Effect on Ecosystems, Population, and Economy of the Russian Part of Altai–Sayany Ecoregion), Kokorin, A.O, Ed., Moscow: WWF Rossii, 2011.

  28. Kalugin, A.S., Current changes in the meteorological and hydrological characteristics in the Ussuri R. basin, Prirodnye opasnosti, sovremennye ekologicheskie riski i ustoichivost' ekosistem. VII Druzhininskie chteniya. Materialy vseros. nauch. konf. s mezhdunarod. uchastiem (Natural Hazards, Current Ecological Risks, and Ecosystem Stability. VII Druzhinin Readings. Proc. Russ. Sci. Conf. with Intern. Particip.), Khabarovsk: OmegaPress, 2019, pp. 200–205.

  29. Kireeva, M.B., Ilich, V.P., Frolova, N.L., et al., Contribution of climatic and anthropogenic factors to the formation of low-water period in the Don basin in 2007–2015, Georisk, 2017, no. 4, pp. 10–21.

  30. Kireeva, M.B. and Frolova, N.L., Current features of spring flood in rivers of the Don basin, Vod. Khoz. Ross.: Probl., Tekhnol., Upravl., 2013, no. 1, pp. 60–76.

  31. Kireeva, M.B., Frolova, N.L., Rets, E.P., et al., Pavodochnyi stok na rekakh Evropeiskoi territorii Rossii i ego rol' v formirovanii sovremennogo vodnogo rezhima, Vod. Khoz. Ross.: Probl., Tekhnol., Upravl, 2018, no. 4, pp. 48–68.

  32. Kuksina, L.V. and Alekseevskii, N.I., Space and time variations of the runoff of Kamchatka Krai rivers, Water Resour., 2016, vol. 43, no. 3, pp. 438–447.

    Article  Google Scholar 

  33. Lavrov, S.A. and Kalyuzhnyi, I.L., Effect of climate changes on spring flood runoff and its formation factors in the Volga basin, Vod. Khoz. Ross.: Probl., Tekhnol., Upravl. 2016, no. 6, pp. 42–60.

  34. Lemeshko, B.Yu., Lemeshko, S.B., and Gorbunova, A.A., On the application and power of tests of variance homogeneity, Pt. I, Izmer. Tekhn., 2010, no, 3, pp. 10–16.

  35. Lisina, I.A., Vasilevskaya, L.N., Vasilevskii, D.N., Podverbnaya, E.N., and Ageeva, S.V., Analysis of the hydrological regime and relationships of the summer–autumn flow in the Lower Amur with circulation indices, Geogr. Vestn., 2020, no. 3, vol. 54, pp. 98–112.

    Google Scholar 

  36. Magritskii, D.V., Water use in the drainage basins of the Arcic rivers in in the Arctic zone of the Russian Federation: parameters, structure, long-term dynamics, Vod. Khoz. Ross.: Probl., Tekhnol., Upravl., 2019, no. 3, pp. 20–37.

  37. Magritskii, D.V., Climate-induced and anthropogenic changes in water flow in major rivers of the Russian Federation in their lower reaches and at sea mouths, Sovremennye tendentsii i perspektivy razvitiya gidrometeorologii v Rossii. Materialy Vseros. nauch.-prakt. konf. (Modern Trends and Development Perspectives of Russian Hydrometeorology. Trans. Russ. Sci.-Pract. Conf.), Irkutsk: Izd. Irk. Gos. Univ., 2018, pp. 285–294.

    Google Scholar 

  38. Magritskii, D.V., Factors and regularities in long-term variations of the runoff of water, suspended sediments, and heat in the Lower Lena and Vilyui, Vestn. Mosk. Gos. Univ., Ser. 5, Geography, 2018, no. 1, pp. 90–101.

  39. Magritskii, D.V., Evstigneev, V.M., Yumina, N.M., et al., Izmeneniya stoka v basseine r. Ural, Vestn. Mosk. Gos. Univ., Ser. 5, Geography, 2018, no. 1, pp. 90–101.

  40. Magritskii, D.V., Chalov, S.R., Agafonova, S.A., et al., Hydrological regime of the Lower Ob under current hydroclimatic conditions and under the effect of large-scale water-management activity, Nauch. Vestn. Yamalo-Nenetskogo Avtonom. Okruga, 2019, no. 1, vol. 102, pp. 106–115.

    Google Scholar 

  41. Makagonova, M.A., Dynamics of water-exchange parameters in small river basins in the zone of East-Asian Monsoon, Geogr. Prir. Res., 2009, no. 2, pp. 139–145.

  42. Makhinov, A.N. and Kim, V.I., Effect of climate changes on the hydrological regime of the Amur, Tikhook. Geogr., 2020, no. 1, vol. 1, pp. 30–39.

    Google Scholar 

  43. Makhinov, A.N., Kosygin, V.Yu., Akhtyamov, M.Kh., et al., Application of the asymptotic extreme value probability theory to forecasting the risk of high floods in the Lower Amur, Water Resour., 2020, vol. 47, no. 3, pp. 359–365.

    Article  Google Scholar 

  44. Nauchno-prikladnoi spravochnik. Mnogoletnie kolebaniya i izmenchivost' vodnykh resursov i osnovnykh kharakteristik stoka rek Rossiiskoi Federatsii (Sci.-Appl. Reference Book: Long-Term Variations and the Variability of Water Resources and Major Characteristics of River Flow in the Russian Federation), St. Petersburg: RIAL, 2021.

  45. Novorotskii, P.V., Long-term runoff fluctuations in the Sungari R., Izv. Irkut. Univ., Ser. Nauki o Zemle, 2009, vol. 1, no. 1, pp. 113–126.

  46. Ostashov, A.A., Solov’ev, V.A., and Pryakhina, G.V., Assessing the space and time variations of water regime characteristics in Altai–Sayany region, Sb. Mater. mezhdunar. konf. “Tret’i Vinogradovskie chteniya: Grani gidrologii” (Coll. Mater. Intern. Conf. “Third Vinogradov Readings: Faces of Hydrology,”) SPb.: Izd. SPb. Gos. Univ., 2018, pp. 618–620.

  47. Rossiiskaya Arktika: Prostranstvo. Vremya. Resursy. Atlas (Russian Arctic: Space, Time, Resources. Atlas), 2019, Moscow: Fond “NIR,” Feoriya, 2019.

  48. Semenov, V.A., Gnilomedov, E.V., Salugashvili, R.S., et al., Distribution geography and the genesis of climate-governed changes in extreme water discharges, hazardous floods, and low-water periods in Russian rivers, Tr. VNIIGMI-MTsD, 2015, no. 179, pp. 108–120.

  49. Sinyukovich, V.N. and Chernyshev, M.S., Transformation of estimated characteristics of the annual and maximal runoff in the major tributaries of Lake Baikal, Water Resour., 2017, vol. 43, no. 3, pp. 372–379.

    Article  Google Scholar 

  50. Sinyukovich, V.N. and Chernyshev, M.S., Peculiarities of long-term variability of surface water inflow to Lake Baikal, Russ. Meteorol. Hydrol., 2019, no. 10, pp. 652–658.

  51. SP 33-101-2003. Opredelenie osnovnykh raschetnykh gidrologicheskikh kharakteristik (Determination of Major Design Hydrological Characteristics), Moscow: Gosstroi Rossii, 2004.

  52. Ushakov, M.V., Incorporation of climate changes in hydrological calculations in Magadan region rivers Global’nye klimaticheskie izmeneniya: regional’nye effekty, modeli, prognozy. Materialy mezhdunarod. nauch.-prakt. konf. (Global Climate Changes: Regional Effects, Models, Forecasts. Proc. Intern. Sci.-Pract. Conf.), Voronezh, 2019, pp. 516–520.

  53. Frolova, N.L., Belyakova, P.A., Grigor’ev, V.Yu., et al., Many-year variations of river runoff in the Selenga Basin, Water Resour., 2017, vol. 43, no. 3, pp. 359–371.

    Article  Google Scholar 

  54. Frolova, N.L., Kireeva, M.B., Kharlamov, M.A., et al., Mapping of the current state and transformation of river water regime in European Russia, Geodez. Kartograf., 2020, vol. 81, no. 7, pp. 14–26.

    Google Scholar 

  55. Frolova, N.L., Stanovova, A.V., and Gorin, S.L., Water flow regime in the lower reaches of the Kamchatka River and its long-term variations, Issled. vodnykh biol. resur. Kamchatki sev.-zap. chasti Tikhogo okeana, 2014, no. 32, pp. 73–78.

  56. Adam, J.C. and Lettenmaier, D.P., Application of new precipitation and reconstructed stream-flow products to stream-flow trend attribution in northern Eurasia, J. Clim., 2008, no. 21, vol. 8, pp. 1807–1828.

    Article  Google Scholar 

  57. Bartlett, M.S., Properties of sufficiency and statistical tests, Proc. Royal Soc. of London. Ser. A, Math. Phys., London: Ser. A., Math. and Phys. Sci., 1937, vol. 160, no. 901, pp. 268–282.

    Google Scholar 

  58. Berezovskaya, S., Yang, D., and Kane, D.L., Compatibility analysis of precipitation and runoff trends over the large Siberian watersheds, Geophys. Rev. Lett., 2004, no. 31, p. L21502.

  59. Bloschl, G., Hall, J., Viglione, A., et al., Changing climate both increases and decreases European river floods, Nature, 2019, vol. 573, no. 7772, pp. 108–111.

    Article  Google Scholar 

  60. Bring, A., Fedorova, I., Dibike, Y., et al., Arctic terrestrial hydrology: a synthesis of processes, regional effects and research challenges, J. Geophys. Res. Biogeosci., 2016, vol. 121, pp. 621–649.

    Article  Google Scholar 

  61. Durocher, M., Requena, A.I., Burn, D.H., et al., Analysis of trends in annual stream-flow to the Arctic Ocean, Hydrol. Processes, 2019, pp. 1–9.

  62. Frolova, N.L., Agafonova, S.A., Kireeva, M.B., et al., Recent changes of annual flow distribution of the Volga basin rivers, Geogr. Environ. Sustain., 2017a, vol. 10, no. 2, pp. 28–39.

    Article  Google Scholar 

  63. Frolova, N.L., Belyakova, P.A., Grigoriev, V.Y., et al., Runoff fluctuations in the Selenga River basin, Reg. Environ. Change, 2017b, vol. 17, pp. 1–12.

    Article  Google Scholar 

  64. Hall, J., Arheimer, B., Borga, M., et al., Understanding flood regime changes in Europe: a state-of-the-art assessment, Hydrol. Earth Syst. Sci., 2014, vol. 18, pp. 2735–2772.

    Article  Google Scholar 

  65. Hersbach, H., Bell, B., Berrisford, P., et al., The ERA5 global reanalysis, Quarterly J. Royal Meteorol. Society, 2020, vol. 146, no. 730, pp. 1999–2049.

    Article  Google Scholar 

  66. Kendall, M.G., Rank Correlation Methods, 4th edition. London: Charles Griffin, 1975.

    Google Scholar 

  67. Kireeva, M., Frolova, N., Rets, E., et al., Evaluating climate and water regime transformation in the European Part of Russia using observation and reanalysis data for the 1945–2015 period, Int. J. River Basin Management, 2019a, vol. 18, no. 4, pp. 1–12.

    Google Scholar 

  68. Kireeva, M., Ilich, V., Frolova, N., et al., Estimation of the impact of climatic and anthropogenic factors on the formation of the extreme low-flow period in the Don river basin during 2007–2016, Geogr. Environ. Sustain., 2019b, vol. 12, no. 2, pp. 62–77.

    Article  Google Scholar 

  69. Kundzewicz, Z.W. and Robson, A.J., Change detection in hydrological records—a review of the methodology, Hydrol. Sci. J., 2004, vol. 49, no. 1, pp. 7–19.

    Article  Google Scholar 

  70. Lammers, R.B., Shiklomanov, A.I., Vorosmarty, C.J., et al., Assessment of contemporary Arctic river runoff based on observational discharge records, J. Geophys. Res., 2001, vol. 106, pp. 3321–3334.

    Article  Google Scholar 

  71. Levene, H., Robust tests for equality of variances, Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling, Stanford: Stanford Univ. Press, 1960, pp. 278–292.

    Google Scholar 

  72. Kremenetski, K.V. Smith, L.C., et al., Recent Eurasian river discharge to the Arctic Ocean in the context of longer-term dendrohydrological records, J. Geophys. Res., 2007, vol. 112, pp. 1–10.

    Google Scholar 

  73. Magritsky, D.V., Frolova, N.L., Evstigneev, V.M., et al., Long-term changes of river water inflow into the seas of the Russian Arctic sector, Polarforschung, 2018, no. 87, vol. 2, pp. 177–194.

    Google Scholar 

  74. Mann, H.B. and Whitney, D.R., On a test of whether one of two random variables is stochastically larger than the other, The Annals of Mathematical Statistics, 1947, vol. 18, no. 1, pp. 50–60.

    Article  Google Scholar 

  75. McClelland, J.W., Dery, S.J., Peterson, B.J., et al., A Pan-Arctic evaluation of changes in river discharge during the latter half of the 20th century, Geophys. Rev. Lett., 2006, no. 33, pp. 1–4.

  76. McClelland, J.W., Holmes, R.M., Peterson, B.J., et al., Increasing river discharge in the Eurasian Arctic: Consideration of dams, permafrost thaw, and fires as potential agents of change, J. Geophys. Res., 2004, vol. 109, pp. 1–12.

    Google Scholar 

  77. Fundamentals of Statistical Hydrology, Naghettini M., Ed., Cham: Springer, 2017.

  78. Nesterova, N., Makarieva, O., and Zemlyanskova, A., Hydrometeorological changes in the North-East of Russia, E3S Web Conf. IV Vinogradov’s Conf., 2020, pp. 1–5.

  79. Pavelsky, T.M. and Smith, L.C., Intercomparison of four global precipitation data sets and their correlation with increased Eurasian river discharge to the Arctic Ocean, J. Geophys. Res., 2006, vol. 111, p. D21112.

    Article  Google Scholar 

  80. Peterson, B.J., Holmes, R.M., McClelland, J.W., Vorosmarty, C.J., Lammers, R.B., Shiklomanov, A.I., Shiklomamov, I.A., and Rahmstorf, S., Increasing river discharge to the Arctic Ocean, Science (Washington, D.C.), 2002, vol. 298, no. 5601, pp. 2171–2173.

    Article  Google Scholar 

  81. Pettitt, A.N., A non-parametric approach to the change point problem, Appl. Statist., 1979, vol. 28, pp. 126–135.

    Article  Google Scholar 

  82. Rawlins, M.A., et al., Evaluation of trends in derived snowfall and rainfall across Eurasia and linkages with discharge to the Arctic Ocean, Geophys. Rev. Lett., 2006, no. 33, p. L07403.

  83. Rawlins, M.A., Ye, H., Yang, D., et al., Divergence in seasonal hydrology across northern Eurasia: emerging trends and water cycle linkages, J. Geophys. Res., 2009, vol. 114, p. D18119.

    Article  Google Scholar 

  84. Rets, E.P., Durmanov, I.N., and Kireeva, M.B., Peak runoff in the North Caucasus: recent trends in magnitude, variation and timing, Water Resour., 2019, vol. 46, no. S1, pp. S56–S66.

    Article  Google Scholar 

  85. Rets, E.P., Durmanov, I.N., Kireeva, M.B., et al., Past “peak water” in the North Caucasus: deglaciation drives a reduction in glacial runoff impacting summer river runoff and peak discharges, Climatic Change, 2020.

  86. Rets, E.P., Dzhamalov, R.G., Kireeva, M.B., et al., Recent trends of river runoff in the North Caucasus, Geogr. Environ. Sustainability, 2018, vol. 11, no. 3, pp. 61–70.

    Google Scholar 

  87. Serreze, M.C., Bromwich, D.H., Clark, M.P., et al., Large-scale hydro-climatology of the terrestrial Arctic drainage system, J. Geophys. Res., 2003, vol. 108(D2), pp. 1–28.

    Google Scholar 

  88. Shiklomanov, A., Dery, S., Tretiakov, M., et al., River freshwater flux to the Arctic Ocean, Arctic Hydrology, Permafrost and Ecosystems, Cham: Springer, 2021, pp. 703–738.

    Google Scholar 

  89. Shiklomanov, A.I. and Lammers, R.B., Changing discharge patterns of high-latitude rivers, Climate Vulnerability: Understanding and Addressing Threats to Essential Resources, Elsevier, 2013, pp. 161–175.

    Google Scholar 

  90. Shiklomanov, A.I., Lammers, R.B., Rawlins, M.A., et al., Temporal and spatial variations in maximum river discharge from a new Russian data set, J. Geophys. Res., 2007, vol. 112, pp. 1–14.

    Google Scholar 

  91. Troy, T.J., Sheffield, J., and Wood, E.F., The role of winter precipitation and temperature on northern Eurasian stream-flow trends, J. Geophys. Res., 2012, vol. 117, pp. 1–15.

    Google Scholar 

  92. Yang, D.Q., Ye, B., and Kane, D.L., Streamflow changes over Siberian Yenisei River Basin, J. Hydrol., 2004a, vol. 296, nos. 1–4, pp. 59–80.

    Article  Google Scholar 

  93. Yang, D.Q., Ye, B., and Shiklomanov, A., Discharge characteristics and changes over the Ob River watershed in Siberia, J. Hydrometeorol., 2004b, vol. 5, no. 4, pp. 595–610.

    Article  Google Scholar 

  94. Ye, B., Yang, D., and Kane, D.L., Changes in Lena River streamflow hydrology: human impact versus natural variations, Water Resour. Res., 2003, no. 39, vol. 7, pp. 1200–1224.

    Google Scholar 

  95. Zhang, X., He, J., Zhang, J., et al., Enhanced poleward moisture transport and amplified northern high-latitude wetting trend, Nature Clim. Change, 2013, vol. 3, pp. 47–51.

    Article  Google Scholar 

  96. Zhou, C., Nooijen, R., Kolechkina, A., et al., Comparative analysis of nonparametric change-point detectors commonly used in hydrology, Hydrol. Sci. J., 2019, vol. 64, no. 14, pp. 1690–1710.

    Article  Google Scholar 

  97. Zorigt, M., Battulga, G., Sarantuya, G., et al., Runoff dynamics of the upper Selenga basin, a major water source for Lake Baikal, under a warming climate, Reg. Environ. Change, 2019, vol. 17, pp. 2609–2619.

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project nos. 21-47-00008 (Statistical Analysis and Assessment of Changes in ER River Runoff) and 19-77-10032 (Assessment of Changes in Maximal Runoff); part of data on the Lena basin were collected and processed under Russian Science Foundation Project 21-17-00181; the cartographic processing of the results was made under Governmental Order to Water Problems Institute, Russian Academy of Sciences, Subject FMWZ-2022-0001; the climatic analysis was carried out under the Development Program of the Interdisciplinary Scientific–Educational School of Moscow State University “The Future of the Planet and Global Environmental Changes.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Frolova.

Additional information

Translated by G. Krichevets

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frolova, N.L., Magritskii, D.V., Kireeva, M.B. et al. Streamflow of Russian Rivers under Current and Forecasted Climate Changes: A Review of Publications. 1. Assessment of Changes in the Water Regime of Russian Rivers by Observation Data. Water Resour 49, 333–350 (2022). https://doi.org/10.1134/S0097807822030046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807822030046

Keywords:

Navigation