Skip to main content
Log in

Experimental simulation of chemistry transformation of anaerobic water during aeration

  • Water Quality and Protection: Environmental Aspects
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

Experiments were carried out to simulate the transformations of anaerobic freshwater chemistry at aeration. Quantitative characteristics of the passage from dissolved into suspended state in the course of aeration were obtained for Fe, Mn, Co, Ni, Cu, Zn, Cd, Ag, Rb, Cs, Sr, Ba, Be, Al, Ga, Cr, Ti, Zr, U, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, B, V, Ge, As, Mo, and W. The decrease in the concentration of dissolved forms was found to be maximal for Fe and Mn, reaching 0.03 and 0.2 mg/L, respectively; these values correspond to the solubility of newly-precipitated oxihydrates of those elements. Among other elements, a high degree of removal is typical of elements-hydrolysates (Cr, Zr, Al, Ga, Be, Ti, and the majority of rare-earth elements), some heavy metals (Zn, Ag, Cd, and Co), and W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseevskii, E.V., Aktivnaya dvuokis’ margantsa (Active Manganese Dioxide), Leningrad: ONTIKhimteoret, 1937.

    Google Scholar 

  2. Afanas’ev, Yu.A., Eremin, V.I., Osenchuk, T.M., and Ryabinin, A.I., Studying the effect of pressure on the solubility of iron (III) and manganese (IV) hydroxides, Zh. Fiz. Khim., 1979, vol. 53, no. 8, pp. 1960–1962.

    Google Scholar 

  3. Afanas’ev, Yu.A., Eremin, V.P., and Ryabinin, A.I., On the effect of hydrostatic pressure and temperature on the solubility of major components of ferro-manganese nodules, Okeanologiya, 1982, vol. 22, no. 3, pp. 420–422.

    Google Scholar 

  4. Brusilovskii, S.A., Metodologiya i normativno-pravovye osnovy gidrokhimicheskogo monitoringa (Methodology and Legislative Basis of Hydrochemical Monitoring), Moscow: Univ. kn, 2010.

    Google Scholar 

  5. Zaborenko, K.B., Brusilovskii, S.A., and Os’kina, T.E., On the solubility of iron (III) hydroxide in water, in Vzaimodeistvie poverkhnostnogo i podzemnogo stoka. Vyp. 1 (Interaction between Surface and Subsurface Runoff), Moscow: Mosk. univ., 1973, pp. 139–147.

    Google Scholar 

  6. Krauskopf, K.B., Separation of manganese and iron in sedimentation process, in Geokhimiya litogeneza (Geochemistry of Lithogenesis), Moscow: IL, 1963, pp. 259–293.

    Google Scholar 

  7. Lur’e, Yu.Yu., Unifitsirovannye metody analiza vod (Unified Methods of Water Analysis), Moscow: Khimiya, 1971.

    Google Scholar 

  8. Mel’nik, Yu.P., Termodinamicheskie konstanty dlya analiza uslovii obrazovaniya zheleznykh rud (Thermodynamic Constants for the Analysis of Iron Ore Formation Conditions), Kiev: Nauk. dumka, 1972.

    Google Scholar 

  9. Nakhshina, E.P., Nabivanets, B.I., and Malinovskaya, L.A., Effect of organic acids on manganese release from bottom deposits (in an experiment), Gidrobiologich. Zhurn., 1976, vol. 12, no. 3, pp. 56–62.

    Google Scholar 

  10. Perel’man, A.I. and Kasimov, N.S., Geokhimiya landshafta (Landscape Geochemistry), Moscow: Astreya2000, 1999.

    Google Scholar 

  11. Pokrovskii, O.S. and Savenko, V.S., Interaction between nonstechiometric manganese oxides with aqueous solutions: solubility and redox equilibria, Geokhimiya, 1995, no. 2, pp. 239–250.

    Google Scholar 

  12. Savenko, A.V., Sorption on calcium carbonate, Radiokhimiya, 2001, vol. 43, no. 2, pp. 174–177.

    Google Scholar 

  13. Savenko, V.S., On formation processes of ferro-manganese nodules: physicochemical analysis, Geokhimiya, 1990, no. 8, pp. 1151–1160.

    Google Scholar 

  14. Savenko, V.S., Andrievskii, E.I., Pavlov, V.A., and Petrukhin, V.A., Microelements, in Vodokhranilishcha Moskvoretskoi vodnoi sistemy (Reservoirs of Moskvoretskaya Water System), Moscow: Mosk. univ., 1985, pp. 130–142.

    Google Scholar 

  15. Savenko, V.S. and Pokrovskii, O.S., Organic complexes of heavy metals in seawater, in Nauchnye i tekhnicheskie aspekty okhrany okruzhayushchei sredy. Obzornaya informatsiya (Scientific and Technical Aspects of Environmental Protection: Survey Data), Moscow: VINITI, 1995, issue 4, pp. 1–44.

    Google Scholar 

  16. Savenko, V.S. and Savenko, A.V., Geokhimiya fosfora v global’nom gidrologicheskom tsikle (Phosphorus Geochemistry in Global Hydrological Cycle), Moscow: GEOS, 2007.

    Google Scholar 

  17. Solomin, G.A., Ionic equilibria in natural waters, Gidrokhim. Mater., 1967, vol. 49, pp. 88–94.

    Google Scholar 

  18. Uil’yams, D., Metally zhizni (Life Metals), Moscow: Mir, 1975.

    Google Scholar 

  19. Khatchinson, D., Limnologiya (Limnology), Moscow: Progress, 1969.

    Google Scholar 

  20. Yatsimirskii, K.B., Vvedenie v bioneorganicheskuyu khimiyu (Introduction to Bioinorganic Chemistry), Kiev: Nauk. dumka, 1976.

    Google Scholar 

  21. Baharim, N., Ismail, R., and Omar, M.H., Effect of thermal stratification on the concentration of iron and manganese in a tropical water supply reservoir, Sains Malaysiana, 2011, vol. 40, no. 8, pp. 821–825.

    Google Scholar 

  22. Benoit, G. and Hemond, H.F., A biogeochemical mass balance of 210Po and 210Pb in an oligotrophic lake with seasonally anoxic hypolimnion, Geochim. Cosmochim. Acta, 1987, vol. 51, no. 6, pp. 1445–1456.

    Article  Google Scholar 

  23. Benoit, G. and Hemond, H.F., 210Po and 210Pb remobilization from lake sediments in relation to iron and manganese cycling, Environ. Sci. Technol., 1990, vol. 24, no. 8, pp. 1224–1234.

    Article  Google Scholar 

  24. Ellis-Evans, J.C. and Leman, E.C.G., Some aspects of iron cycling in maritime Antarctic lakes, Hydrobiologia, 1989, vol. 172, no. 1, pp. 149–164.

    Article  Google Scholar 

  25. Hamilton-Taylor, J. and Davison, W., Redox-driven cycling of trace elements in lakes, in Physics and Chemistry of Lakes, Berlin: Springer-Verlag, pp. 217–2631995.

  26. Hamilton-Taylor, J., Davison, W., and Morfett, K., The biogeochemical cycling of Zn, Cu, Fe, Mn, and dissolved organic C in a seasonally anoxic lake, Limnol. Oceanogr., 1996, vol. 41, no. 3, pp. 408–418.

    Article  Google Scholar 

  27. Hem, J.D., Chemical factors that influence the availability of iron and manganese in aqueous systems, Geol. Soc. Am. Bull., 1972, vol. 83, no. 2, pp. 443–450.

    Article  Google Scholar 

  28. Hongve, D., Cycling of iron, manganese and phosphate in meromictic lake, Limnol. Oceanogr., 1997, vol. 42, no. 4, pp. 635–647.

    Article  Google Scholar 

  29. Luther, G.W., Glazer, B., Ma, S., Trouwborst, R., Shultz, B.R., Druschel, G., and Kraiya, C., Iron and sulfur chemistry in stratified lake: evidence for ironrich sulfide complexes, Aquatic Geochem., 2003, vol. 9, no. 2, pp. 87–110.

    Article  Google Scholar 

  30. Robbins, J.A. and Eadie, B.J., Seasonal cycling of trace elements 137Cs, 9Be and 239+240Pu in Lake Michigan, J. Geophys. Res., 1991.

    Google Scholar 

  31. Roseboom, D.P., Evans, R.L., Wang, W.-C., Butts, T.A., and Twait, R.M., Effect of Bottom Conditions on Eutrophy of Impoundments, Urbana: Illinois Inst. of Natural Resources, 1979.

    Google Scholar 

  32. Seyler, P. and Martin, J.-M., Biogeochemical processes affecting arsenic species distribution in a permanently stratified lake, Environ. Sci. Technol., 1989, vol. 23, no. 10, pp. 1258–1263.

    Article  Google Scholar 

  33. Swain, H.A., Lee, C., and Rozelle, R.B., Determination of the solubility of manganese hydroxide and manganese dioxide at 25 C by atomic absorption spectrometry, Analyt. Chem., 1975, vol. 47, no. 7, pp. 1135–1137.

    Article  Google Scholar 

  34. Taillefert, M., Lienemann, C.-P., Gaillard, J.-F., and Perret, D., Speciation, reactivity, and cycling of Fe and Pb in a meromictic lake, Geochim. Cosmochim. Acta, 2000, vol. 64, no. 2, pp. 169–183.

    Article  Google Scholar 

  35. Takematsu, N., Sato, Y., and Okabe, S., The partition of minor transition metals between manganese oxides and seawater, J. Oceanogr. Soc. Jpn., 1981, vol. 37, no. 4, pp. 193–197.

    Article  Google Scholar 

  36. Takematsu, N., Sato, Y., and Okabe, S., The formation of todorokite and birnessite in sea water pumped from under ground, Geochim. Cosmochim. Acta, 1984, vol. 48, no. 5, pp. 1099–1106.

    Article  Google Scholar 

  37. White, J.R. and Driscoll, C.T., Lead cycling in an acidic Adirondack Lake, Environ. Sci. Technol., 1985, vol. 19, no. 12, pp. 1182–1187.

    Article  Google Scholar 

  38. Yagi, A., Manganese cycle in Lake Fukami-ike, Verh. Internat. Verein. Limnol., 1993, vol. 25, pp. 193–199.

    Google Scholar 

  39. Yagi, A. and Shimodaira, I., Seasonal changes of iron and manganese in Lake Fukami-ike—occurrence of turbid manganese layer, Japan J. Limnol., 1986, vol. 47, no. 3, pp. 279–289.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Savenko.

Additional information

Original Russian Text © A.V. Savenko, V.S. Savenko, O.S. Pokrovskii, 2016, published in Vodnye Resursy, 2016, Vol. 43, No. 4, pp. 408–418.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savenko, A.V., Savenko, V.S. & Pokrovskii, O.S. Experimental simulation of chemistry transformation of anaerobic water during aeration. Water Resour 43, 647–656 (2016). https://doi.org/10.1134/S0097807816040138

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807816040138

Keywords

Navigation