Skip to main content
Log in

Fe/P concentration ratio in Mozhaisk reservoir deposits as an indicator of phosphate sorption

  • Water Quality and Protection: Environmental Aspects
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

A relationship is established between within-year variations in Fetot/Ptot ratio in pore solution and the concentration of organic P compounds in solid phase. The passage of the FeOOH-P system in the silts of the Mozhaisk Reservoir from the aerobic conditions to aerobic is generally accompanied by dissolution of FeOOH and desorption of phosphates. The change from anaerobic conditions to aerobic during the spring and autumn seasons exhibits hysteresis in oxidation of Fe compounds in silts, such that variations in Fe/P ratio in the solid phase of silt do not agree with those in the pore solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arinushkina, E.V., Rukovodstvo po khimicheskomu analizu pochv (Guide on Chemical Analysis of Soils), Moscow: Mosk. Gos. Univ., 1961.

    Google Scholar 

  2. Brekhovskikh, V.F., Kazmiruk, V.D., and Vishnevskaya, G.N., Biota v protsessakh massoperenosa v vodnykh ob“ektakh (Biota in Mass Transport Processes in Water Bodies), Moscow: Nauka, 2008.

    Google Scholar 

  3. Bugaenko, A.L. and Kuznetsov, D.A., Nuclear-Magnetic Control of Energy Carriers in Living Organisms, Vestn. Ross. Akad. Nauk, 2008, vol. 78, no. 6, pp. 579–583.

    Google Scholar 

  4. Vinogradova N.N., Suspended Matter and Bottom Sediments, Kompleksnye issledovaniya vodokhranilishch (Multidisciplinary Studies of Reservoirs), Moscow: Mosk. Gos. Univ., 1979, iss. II, pp. 231–261.

    Google Scholar 

  5. Martynova M.V., Samplers for Studying Bottom Water, Voprosy gidrologicheskogo priborostroeniya (Issues of Hydrological Instrumentation), Leningrad: Gidrometeoizdat, 1977.

    Google Scholar 

  6. Martynova, M.V., Azot i fosfor v donnykh otlozheniyakh ozer i vodokhranilishch (Nitrogen and Phosphorus in Bottom Sediments of Lakes and Reservoirs), Moscow: Nauka, 1984.

    Google Scholar 

  7. Martynova, M.V., Spatial and Temporal Distributions of Phosphorus Compounds in the Bottom Water of a Small Reservoir, Vodn. Resur., 2004, vol. 31, no. 3, pp. 315–324 [Water Resour. (Engl. Transl.), vol. 31, no. 3, pp. 315–324].

    Google Scholar 

  8. Martynova, M.V., Impact of the Chemical Composition of Bottom Sediments on Internal Phosphorus Load, Vodn. Resur., 2008, vol. 35, no. 3, pp. 358–363 [Water Resour. (Engl. Transl.), vol. 35, no. 3, pp. 339–345].

    Google Scholar 

  9. Martynova, M.V., Fe(II)/Fe(III) Ratio in Silt Pore Solution in the Mozhaisk Reservoir, Vodn. Resur., 2009, vol. 36, no. 6, pp. 705–710 [Water Resour. (Engl. Transl.), vol. 36, no. 6, pp. 683–688].

    Google Scholar 

  10. Martynova, M.V., and Kozlova, E.I., Phosphorus in Deposits of Two High-Trophicity Lakes, Vodn. Resur., 1987, no. 2, pp. 103–112.

  11. Martynova, M.V., and Shmideberg, N.A. On Methods for Determining Different Phosphorus Forms in Bottom Sediments, Gidrokhim. Mater., 1983, vol. 85, pp. 49–55.

    Google Scholar 

  12. Modelirovanie rezhima fosfora v dolinnom vodokhranilishche (Modeling Phosphorus Regime in a Valley Reservoir), Edel’shtein, K.K., Ed., Moscow: Mosk. Gos. Univ., 1995.

    Google Scholar 

  13. Pivovarov, S.A., Physicochemical Modeling of Behavior of Heavy Metals (Cu, Zn, Cd) in Natural Waters: Complexes in Solution, Adsorpion, Ionic Exchange, Transport Phenomena, Cand. Sci. (Chem.) Dissertation, Moscow: IGEM, 2003.

    Google Scholar 

  14. Savenko, A.V., Phosphorus within the Mixing Zone of Sea and River Waters, Vodn. Resur., 1998, vol. 25, no. 3, pp. 330–334 [Water Resour. (Engl. Transl.), vol. 25, no. 3, pp. 293–301].

    Google Scholar 

  15. Sapozhnikov, V.V., and Nosova, V.V., Methodology and Some Preliminary Results of Determining Different Phosphorys Forms in Mozhaisk Reservoir Water, Gidrokhimicheskie issledovaniya poverkhnostnykh i podzemnykh vod raiona Mozhaiskogo vodokhranilishcha (Hydrochemical Studies of Surface and Subsurface Water in Mozhaisk Reservoir Area), Moscow: Mosk. Gos. Univ., 1977, pp. 23–34.

    Google Scholar 

  16. Unifitsirovannye metody analiza vod (Unified Methods of Water Analysis), Moscow: Khimiya, 1973.

  17. Fatchikhina, O.E., Dynamics of Phosphorus Concentration in Black Lake, Gidrokhim. mater., 1948, vol. 15, pp. 180–204.

    Google Scholar 

  18. Kheifets, D.M., Methods for Determining Phosphorus in Soil, Agrokhimicheskie metody issledovaniya pochv (Agrochemical Methods for Soil Studies), Moscow: Sel’khozgiz, 1965.

    Google Scholar 

  19. Baccini, P., Phosphate Interactions at the Sediment-Water Interface, Chemical Processes in Lakes, Stumm. W., Ed., New York: Wiley, 1985, pp. 189–205.

    Google Scholar 

  20. Borovek, Ja., Chemical Composition and Phosphorus Fractionation of Sediments in the Bohemian Forest Lakes, Silva Gabreta, 2000, vol. 4, pp. 179–184.

    Google Scholar 

  21. Buffle, J., De Vitre, R.R., Perret, D., and Leppard, G.G., Physico-Chemical Characteristics of a Colloidal Iron Phosphate Species Formed at the Oxic-Anoxic Interface of a Eutrophic Lake, Geochim. Cosmochim. Acta., 1989, vol. 53, no. 2, pp. 399–408.

    Article  Google Scholar 

  22. Edzwald, J.K., Toensing, D.C., and Leung, M., Phosphate adsorption reactions with clay minerals, Environ. Sci. Technol., 1976, vol. 10, no. 5, pp. 485–490.

    Article  Google Scholar 

  23. Einsele, W., Über die Beziehungen des Eisenkreislaufs zum Phosphatkreislauf im eutrophen See, Arch. Hydrobiol., 1936, vol. 29, no. 6. pp. 664–686.

    Google Scholar 

  24. Elrod, V.A., Berelson, W.M., Coale, K.H., and Johnson, K.S., The Flux of Iron from Continenetal Shelf Sediments: A Missing Source of Global Budgets, Geophys. Res. Lett., 2004, vol. 31, P. L 12307/1–L12307/4.

    Google Scholar 

  25. Gächter, R., Meyer, J.S., and Mares, A., Contribution of Bacteria to Release and Fixation of Phosphorus in Lake Sediments, Limnol. Oceanogr., 1988, vol. 33, no. 11, pp. 1542–1558.

    Article  Google Scholar 

  26. Gächter, R., and Müller, B., Why the Phosphorus Retention of Lakes Does Not Necesserily Depend on the Oxygen Supply to Their Sediment Surface, Limnol. Oceanogr., 2003, vol. 48, no. 7, pp. 929–933.

    Article  Google Scholar 

  27. Golterman, H.L., The Labyrinth of Nutrient Cycles and Buffers in Wetlands: Results Based on Research in the Camarague (Southern France), Hydrobiologia, 1995, vol. 315, no. 1, pp. 39–58.

    Article  Google Scholar 

  28. Golterman, H.L., and Glumo, R.S., Methods for Chemical Analysis of Fresh Water, Oxford: Blackwell Scientific Publ., 1969.

    Google Scholar 

  29. Hansen, H.C.B., Guldberg, S., Erbs, M., and Koch, C.B., Kinetics of Nitrate Reduction by Green Rusts-Effects of Interlayer Anion and Fe(II): Fe(III) Ratio, Appl. Clay Sci., 2001, vol. 18, no. 1, pp. 81–91.

    Article  Google Scholar 

  30. Holdren, G.C., and Armstrong, D.E., Interstitial Ion Concentrations as an Indicator of Phosphorus Release and Mineral Formation in Lake Sediments, Sediments and Water Interactions, Sly, P.G, Ed., New York: Springer, 1986.

    Google Scholar 

  31. Hongve, D., Chemical Stratification and Stability of Meromectic Lakes in the Upper Romerike District, Schweiz. Z. Hydrol., 1981, vol. 42. no. 2, pp. 171–195.

    Article  Google Scholar 

  32. Jensen, H.S., Kristensen, P., Jeppen, E., and Skytthe, A., Iron: Phosphorus Ratio in Surface Sediment as an Indicator of Phosphate Release from Aerobic Sediments in Shallow Lakes, Hydrobiola, 1992, vol. 235/236, pp. 731–743.

    Article  Google Scholar 

  33. Lehtoranta, J., and Heiskanen, A.-S., Dissolved Iron: Phosphate Ratio as an Indicator of Phosphate Release to Oxic Water of the Inner and Outher Coastal Baltic Sea, Hydrobiologia, 2003, vol. 492,Pt 1, pp. 69–84.

    Article  Google Scholar 

  34. Lijklema, L., Interaction of Ortophosphate with Iron (III) and Aluminium Hydroxides, Environ. Sci. Technol., 1980, vol. 14, no. 2, pp. 537–541.

    Article  Google Scholar 

  35. Löfgren, S., Boström, B., Interstitial Water Concentration of Phosporus, Iron and Manganese in a Shallow Eutrophic Swedish Lake—Implications for Phosphorus Cycling, Water Res., 1989, vol. 23, no. 9, pp. 1115–1125.

    Article  Google Scholar 

  36. Manning, P. G., Birchall, T., and Jones, W., The Partitioning of Non-Apatite Inorganic Phosporus in Sediments from Lakes Erie and Ontario, Can. Mineral., 1984, vol. 22, no. 3, pp. 357–365.

    Google Scholar 

  37. Mortimer, C. H., The Exchange of Dissolved Substances between Mud and Water in Lakes, J. Ecol., 1941, no. 2, pp. 280–329.

  38. Ostrofsky, M.L., Phosphorus Species in the Surficial Sediments of Lakes of Eastern North America, Can. J. Fish. Aquat. Sci., 1987, vol. 44, no. 5, pp. 960–966.

    Article  Google Scholar 

  39. Petersson, K., The Fractional Composition of Phosphorus in Lake Sediments of Different Characteristics, Sediment and Water Interactions, Ed. Sly, P.G., N. Y.: Springer, 1986, pp. 149–155.

    Google Scholar 

  40. Schindler, D.W., The Coupling of Elemental Cycles by Organisms: Evidence from Whole-Lake Chemical Perturbations, Chemical Pprocesses in Lakes, Stumm, W., Ed. N. Y.: John Wiley & Sons, 1985, pp. 225–250.

    Google Scholar 

  41. Schwertmann, U., Carlson, L., and Fechter, H., Iron Oxide Formation in Artifical Ground Waters, Schweiz. Z. Hydrol., 1984, vol. 46, no. 2, pp. 185–191.

    Article  Google Scholar 

  42. Stauffer, R.E., and Armstrong, D.E., Cycling of Iron, Manganese, Silica, Phosphorus, Calcium and, Potassium in Two Stratified Basins of Shagawa Lake, Minnesota, Geochim. Cosmochim. Acta, 1986, vol. 50, no. 2, pp. 215–229.

    Article  Google Scholar 

  43. Tessenow, U., Lösungs-, Diffusions- and Sorptions Processe in Der Oberschicht Von Seesedimenten, Arch. Hydrobiol., 1974, Suppl. 47, pp. 1–79.

  44. Tipping, E., Woof, C., and Cooke, D., Iron Oxide from Seasonally Anoxic Lake, Geochim. Cosmochim. Acta, 1981, vol. 45, no. 12, pp. 1411–1419.

    Article  Google Scholar 

  45. Von Gunten, U., and Schneider, W., Primary Products of the Oxygenation of Iron (II) at an Oxic-Anoxic Boundary: Nucleation, Aggregation, and Aging, J. Coll. Interf. Sci., 1991, vol. 145, no. 1, pp. 127–139.

    Article  Google Scholar 

  46. Weber, K.A., Urrutia, M.M., Churchill, P.F., et al., Anaerobic Redox Cycling of Iron by Freshwater Sediment Microorganisms, Environ. Microbiol., 2006, vol. 8, no. 1, pp. 100–113.

    Article  Google Scholar 

  47. Williams, J. D.H., Syers, J.K., Armstrong, D.E., and Harris, R.F., Levels of Inorganic and Total Phosphorus in Lake Sediments as Related to Other Sediments Parameter, Environ. Sci. Technol., 1971, vol. 5, no. 4, pp. 1113–1120.

    Article  Google Scholar 

  48. Zhu, G.-W., Qin, B.-Q., Zhang, L., and Luo L.-C., Geochemical Forms of Phosphorus in Sediments of Three Large, Shallow Lakes of China, Pedosphere, 2006, vol. 16, no. 6, pp. 726–734.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M.V. Martynova, 2011, published in Vodnye Resursy, 2011, Vol. 38, No. 2, pp. 205–213.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martynova, M.V. Fe/P concentration ratio in Mozhaisk reservoir deposits as an indicator of phosphate sorption. Water Resour 38, 211–219 (2011). https://doi.org/10.1134/S0097807810061053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807810061053

Keywords

Navigation