Skip to main content
Log in

Formal Bott–Thurston Cocycle and Part of a Formal Riemann–Roch Theorem

  • Research Articles
  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

The Bott–Thurston cocycle is a \(2\)-cocycle on the group of orientation-preserving diffeomorphisms of the circle. We introduce and study a formal analog of the Bott–Thurston cocycle. The formal Bott–Thurston cocycle is a \(2\)-cocycle on the group of continuous \(A\)-automorphisms of the algebra \(A((t))\) of Laurent series over a commutative ring \(A\) with values in the group \(A^*\) of invertible elements of \(A\). We prove that the central extension given by the formal Bott–Thurston cocycle is equivalent to the 12-fold Baer sum of the determinantal central extension when \(A\) is a \(\mathbb Q\)-algebra. As a consequence of this result we prove a part of a new formal Riemann–Roch theorem. This Riemann–Roch theorem is applied to a ringed space on a separated scheme \(S\) over \(\mathbb Q\), where the structure sheaf of the ringed space is locally on \(S\) isomorphic to the sheaf \(\mathcal O_S((t))\) and the transition automorphisms are continuous. Locally on \(S\) this ringed space corresponds to the punctured formal neighborhood of a section of a smooth morphism to \(U\) of relative dimension \(1\), where \(U \subset S\) is an open subset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes

  1. The further development of these results and their application to the full new formal Riemann–Roch theorem will be given in our subsequent papers.

References

  1. A. Beilinson, S. Bloch, and H. Esnault, “\(\varepsilon \)-Factors for Gauss–Manin determinants,” Moscow Math. J. 2 (3), 477–532 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Bloch, “\(K_2\) and algebraic cycles,” Ann. Math., Ser. 2, 99, 349–379 (1974).

    Article  MATH  Google Scholar 

  3. R. Bott, “On the characteristic classes of groups of diffeomorphisms,” Enseign. Math., Sér. 2, 23 (3–4), 209–220 (1977).

    MathSciNet  MATH  Google Scholar 

  4. R. Bott, “On some formulas for the characteristic classes of group-actions,” in Differential Topology, Foliations and Gelfand–Fuks Cohomology: Proc. Symp., Rio de Janeiro, 1976 (Springer, Berlin, 1978), Lect. Notes Math. 652, pp. 25–61.

    Chapter  Google Scholar 

  5. P. Bressler, M. Kapranov, B. Tsygan, and E. Vasserot, “Riemann–Roch for real varieties,” in Algebra, Arithmetic, and Geometry: In Honor of Yu. I. Manin on the Occasion of His 70th Birthday (Birkhäuser, Boston, 2009), Vol. I, Prog. Math. 269, pp. 125–164.

    Chapter  Google Scholar 

  6. K. S. Brown, Cohomology of Groups (Springer, New York, 1982), Grad. Texts Math. 87.

    MATH  Google Scholar 

  7. J.-L. Brylinski, Loop Spaces, Characteristic Classes and Geometric Quantization (Birkhäuser, Boston, 1993), Prog. Math. 107.

    Book  MATH  Google Scholar 

  8. C. Contou-Carrère, “Jacobienne locale, groupe de bivecteurs de Witt universel, et symbole modéré,” C. R. Acad. Sci., Paris, Sér. I, 318 (8), 743–746 (1994).

    MathSciNet  MATH  Google Scholar 

  9. C. Contou-Carrère, “Jacobienne locale d’une courbe formelle relative,” Rend. Semin. Mat. Univ. Padova 130, 1–106 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Deligne, “Le déterminant de la cohomologie,” in Current Trends in Arithmetical Algebraic Geometry: Proc. Summer Res. Conf., Arcata, CA, 1985 (Am. Math. Soc., Providence, RI, 1987), Contemp. Math. 67, pp. 93–177.

    Chapter  Google Scholar 

  11. P. Deligne, “Le symbole modéré,” Publ. Math., Inst. Hautes Étud. Sci. 73, 147–181 (1991).

    Article  MATH  Google Scholar 

  12. M. Demazure and A. Grothendieck, Schémas en groupes. I: Prorpiétés générales des schémas en groupes (Springer, Berlin, 1970), Séminaire de géométrie algébrique du Bois Marie 1962/64 (SGA 3), Lect. Notes Math. 151.

    Book  MATH  Google Scholar 

  13. J. Dieudonné, Introduction to the Theory of Formal Groups (M. Dekker, New York, 1973), Pure Appl. Math. 20.

    MATH  Google Scholar 

  14. B. L. Feigin and D. B. Fuchs, “Cohomologies of Lie groups and Lie algebras,” in Lie Groups and Lie Algebras II (Springer, Berlin, 2000), Encycl. Math. Sci. 21, pp. 125–215 [transl. from Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat., Fundam. Napravl. 21, 121–209 (1988)].

    Google Scholar 

  15. E. Frenkel and X. Zhu, “Gerbal representations of double loop groups,” Int. Math. Res. Not. 2012 (17), 3929–4013 (2012).

    MathSciNet  MATH  Google Scholar 

  16. D. B. Fuks, Cohomology of Infinite-Dimensional Lie Algebras (Consultants Bureau, New York, 1986) [transl. from Russian (Nauka, Moscow, 1984)].

    Book  MATH  Google Scholar 

  17. S. O. Gorchinskiy and D. V. Osipov, “A higher-dimensional Contou-Carrère symbol: Local theory,” Sb. Math. 206 (9), 1191–1259 (2015) [transl. from Mat. Sb. 206 (9), 21–98 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  18. S. O. Gorchinskiy and D. V. Osipov, “Continuous homomorphisms between algebras of iterated Laurent series over a ring,” Proc. Steklov Inst. Math. 294, 47–66 (2016) [transl. from Tr. Mat. Inst. Steklova 294, 54–75 (2016)].

    Article  MathSciNet  MATH  Google Scholar 

  19. S. O. Gorchinskiy and D. V. Osipov, “Higher-dimensional Contou-Carrère symbol and continuous automorphisms,” Funct. Anal. Appl. 50 (4), 268–280 (2016) [transl. from Funkts. Anal. Prilozh. 50 (4), 26–42 (2016)].

    Article  MathSciNet  MATH  Google Scholar 

  20. S. O. Gorchinskiy and D. V. Osipov, “The higher-dimensional Contou-Carrère symbol and commutative group schemes,” Russ. Math. Surv. 75 (3), 572–574 (2020) [transl. from Usp. Mat. Nauk 75 (3), 185–186 (2020)].

    Article  MATH  Google Scholar 

  21. S. O. Gorchinskiy and D. V. Osipov, “Iterated Laurent series over rings and the Contou-Carrère symbol,” Russ. Math. Surv. 75 (6), 995–1066 (2020) [transl. from Usp. Mat. Nauk 75 (6), 3–84 (2020)].

    Article  MATH  Google Scholar 

  22. A. Grothendieck, Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas (quatrième partie) (Inst. Hautes Étud. Sci., Bures-sur-Yvette, 1967), Publ. Math., Inst. Hautes Étud. Sci. 32.

    MATH  Google Scholar 

  23. L. Guieu and C. Roger, L’algèbre et le groupe de Virasoro: Aspects géométriques et algébriques, généralisations (avec un appendice de Vlad Sergiescu) (Les Publ. CRM, Montreal, 2007).

    MATH  Google Scholar 

  24. V. G. Kac and D. H. Peterson, “Spin and wedge representations of infinite-dimensional Lie algebras and groups,” Proc. Natl. Acad. Sci. USA 78 (6), 3308–3312 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Kapranov and É. Vasserot, “Formal loops. II: A local Riemann–Roch theorem for determinantal gerbes,” Ann. Sci. Éc. Norm. Supér., Ser. 4, 40 (1), 113–133 (2007).

    MathSciNet  MATH  Google Scholar 

  26. K. Kato, “Milnor K-theory and the Chow group of zero cycles,” in Applications of Algebraic K-Theory to Algebraic Geometry and Number Theory: Proc. AMS–IMS–SIAM Joint Summer Res. Conf., Boulder, CO, 1983 (Am. Math. Soc., Providence, RI, 1986), Part I, Contemp. Math. 55, pp. 241–253.

    Chapter  Google Scholar 

  27. B. A. Khesin and R. Wendt, The Geometry of Infinite-Dimensional Groups (Springer, Berlin, 2009), Ergeb. Math. Grenzgeb., 3. Folge 51.

    Book  MATH  Google Scholar 

  28. J. Milnor, Introduction to Algebraic \(\,K\)-Theory (Princeton Univ. Press, Princeton, NJ, 1971), Ann. Math. Stud. 72.

    MATH  Google Scholar 

  29. J. Morava, “An algebraic analog of the Virasoro group,” Czech. J. Phys. 51 (12), 1395–1400 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  30. D. Mumford, Lectures on Curves on an Algebraic Surface (Princeton Univ. Press, Princeton, NJ, 1966), Ann. Math. Stud. 59.

    Book  MATH  Google Scholar 

  31. D. V. Osipov, “Adele constructions of direct images of differentials and symbols,” Sb. Math. 188 (5), 697–723 (1997) [transl. from Mat. Sb. 188 (5), 59–84 (1997)].

    Article  MathSciNet  MATH  Google Scholar 

  32. D. Osipov and X. Zhu, “The two-dimensional Contou-Carrère symbol and reciprocity laws,” J. Algebr. Geom. 25 (4), 703–774 (2016).

    Article  MATH  Google Scholar 

  33. A. Pressley and G. Segal, Loop Groups (Clarendon Press, Oxford, 1988), Oxford Math. Monogr.

    MATH  Google Scholar 

  34. G. Segal, “Unitary representations of some infinite dimensional groups,” Commun. Math. Phys. 80 (3), 301–342 (1981).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I am grateful to A. N. Parshin for making some comments and providing some references.

Funding

The study has been funded within the framework of the HSE University Basic Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Osipov.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2023, Vol. 320, pp. 243–277 https://doi.org/10.4213/tm4310.

In memory of A. N. Parshin

Appendix A. Lie algebra-valued functors constructed from group functors

In this appendix we collected some statements on how to construct a Lie algebra-valued functor from a group functor with some conditions and how to construct a \(2\)-cocycle on the Lie algebra-valued functor from a corresponding \(2\)-cocycle on a group functor.

Above in the paper, we applied these statements to group functors represented by ind-schemes.

We fix a commutative ring \(R\). All functors considered below will be from the category of commutative \(R\)-algebras. By \(A\) we denote an arbitrary commutative \(R\)-algebra.

In Subsections A.1 and A.2 below we mainly follow, but with some additions, the work [12, Exp. II] by M. Demazure.

Appendix A.1. Tangent space functors

Let \(G\) be a (covariant) functor. Let \(x\in G(R)\). Then the tangent space functor \(TG_x\) of \(G\) at \(x\) is defined as

$$TG_x(A) = \rho^{-1}(x),$$
where \(\rho \colon\, G(A[\varepsilon]/\varepsilon^2)\to G(A)\) is the natural map and we consider the image of \(x\) in \(G(A)\).

For any free \(A\)-module \(V\) of finite rank, we consider the commutative \(A\)-algebra \(I_V\) which is isomorphic to \(A\oplus V\) as an \(A\)-module and in which the multiplication is defined by the relation \(A=A\cdot 1\) and the fact that the second direct summand \(V\) is an ideal of \(I_V\) with \(V^2=(0)\). For any \(x\in G(R)\) we define

$$G(I_V)_x = \varrho^{-1}(x),$$
where \(\varrho \colon\, G(I_V)\to G(A)\) is the natural map. Note that \(G(I_A)_x = TG_x(A)\).

We suppose that \(G\) satisfies the following condition for any free \(A\)-modules \(V_1\) and \(V_2\) of finite ranks:

$$ G(I_{V_1 \oplus V_2})_x \xrightarrow{\sim} G(I_{V_1})_x\times G(I_{V_2})_x,$$
(A.1)
where the map is induced by the natural homomorphisms \(I_{V_1 \oplus V_2}\to I_{V_i}\). In this case \(TG_x\) has a natural structure of an \( {\mathbb A} ^1_R\)-module, where \( {\mathbb A} ^1_R(A) = A\) (see the appendix to Lecture 4 in [30] in the case when \(A =R\) is a field, and see [12, Exp. II, Definition 3.5, Proposition 3.6] in the general case, which has the same form). For any fixed \(\xi_1,\xi_2\in G(I_A)_x\) and any \(\alpha,\beta\in A\), the result \(\alpha \xi_1 + \beta \xi_2\) comes from the following diagram:
$$G(I_A)_x\times G(I_A)_x \xleftarrow{\sim} G (I_{A \oplus A})_x \xrightarrow{\langle\alpha,\beta\rangle} G(I_A)_x,$$
where the map \(\langle \alpha, \beta \rangle\) is induced by the \(A\)-module homomorphism \((\gamma, \delta) \mapsto (\alpha \gamma + \beta \delta)\) from \(A \oplus A\) to \(A\). The image of the element \(\xi_1\times\xi_2\) is equal, by definition, to \(\alpha \xi_1 + \beta \xi_2\).

Remark A.1.

By an ind-scheme we mean an ind-object of the category of schemes such that all transition maps in the ind-object are closed embeddings of schemes. If a functor \(G\) is represented by an ind-scheme over \(R\), then condition (A.1) is satisfied, since it is satisfied for schemes. Moreover, in this case \(TG_x\) is the inductive limit of tangent space functors to the corresponding schemes, and the \( {\mathbb A} ^1_R\)-module structure on \(TG_x\) induced by this inductive limit coincides with the \( {\mathbb A} ^1_R\)-module structure described above.

Now we will consider only group functors and we suppose that they satisfy condition (A.1).

Note that for a group functor \(G\), it suffices to check condition (A.1) only for \(x=e\), where \(e\in G(R)\) is the identity element. Moreover, the group structure on \(G\) induces a group structure on \(TG_e\), and this group structure coincides with the group structure coming from the structure of an \( {\mathbb A} ^1_R\)-module defined above (see [12, Exp. II, Corollary 3 to Proposition 3.9]).

Now according to [12, Exp. II, Definition 4.6], we say that a group functor \(G\) is good if additionally to condition (A.1) the functor \(G\) satisfies the condition

$$ TG_e(A) \otimes_A I_V \xrightarrow{\sim} TG_e (I_V)$$
(A.2)
for any commutative \(R\)-algebra \(A\) and any free \(A\)-module \(V\) of finite rank. The map is induced by the natural embedding \(A \hookrightarrow I_V\) and the \(I_V\)-module structure on \(TG_e (I_V)\).

Remark A.2.

If a group functor \(G\) is represented by a group ind-scheme, then \(G\) is good, because a functor represented by a scheme satisfies condition (A.1) and condition (A.2), which can be formulated for any functors satisfying condition (A.1).

Appendix A.2. Lie bracket

For a good group functor \(G\) we introduce the notation \( \operatorname{Lie} G = TG_e\). Now we consider only good group functors. For good group functors it is possible to define the Lie bracket on \( \operatorname{Lie} G\) in the same way as it is done before Proposition 4.8 in [12, Exp. II]. We have the following commutative diagram with exact columns and rows:

Here \( \operatorname{Lie} G(A) \subset G(A[\varepsilon_1 \varepsilon_2]/(\varepsilon_1^2 \varepsilon_2^2))\) in the upper left corner is canonically isomorphic to the group \( \operatorname{Ker} \alpha \cap \operatorname{Ker} \beta\).

Now we take an element \(f_1\in \operatorname{Lie} G(A) \subset G (A[\varepsilon_1]/(\varepsilon_1^2))\) in the lower left corner of the diagram and an element \(f_2\in \operatorname{Lie} G(A) \subset G (A[\varepsilon_2]/(\varepsilon_2^2))\) in the upper right corner of the diagram. Using the fact that all columns and rows of the diagram have canonical group splittings, we find that \(f_1, f_2\in G(A[\varepsilon_1,\varepsilon_2]/(\varepsilon_1^2, \varepsilon_2^2))\). By definition, the Lie bracket

$$ [f_1, f_2] = f_1 f_2 f_1^{-1} f_2^{-1}\in G (A[\varepsilon_1,\varepsilon_2]/(\varepsilon_1^2, \varepsilon_2^2))$$
(A.3)
is the image of the element of \( \operatorname{Lie} G(A)\) in the upper left corner under the embedding induced by the embedding of rings \(A [\varepsilon_1 \varepsilon_2]/(\varepsilon_1^2 \varepsilon_2^2) \hookrightarrow A [\varepsilon_1,\varepsilon_2]/(\varepsilon_1^2, \varepsilon_2^2)\).

The described bracket

$$[ \kern1pt\cdot\kern1pt,\cdot\kern1pt ] \colon\, \, \operatorname{Lie} G(A)\times \operatorname{Lie} G(A)\to \operatorname{Lie} G(A)$$
is functorial with respect to \(A\), \(A\)-bilinear, and satisfies the Jacobi identity (see formulas (5) and (6) after Lemma 5.11 in [28, §5] for commutators in a group).

By construction, we have \([f_1, f_2] + [f_2, f_1]= 0\) for any \(f_1, f_2\in \operatorname{Lie} G(A)\).

By an ind-affine ind-scheme we mean an ind-scheme \(M= \mathop{\mathopen{{}^{\backprime\backprime}}\varinjlim_{i\in I}^{\prime\prime}} \operatorname{Spec} A_i\). By \( {\mathcal O} (M)= \varprojlim_{i\in I} A_i\) we denote the corresponding topological algebra of regular functions on \(M\) (with the topology of projective limit, taking the discrete topology on each \(A_i\)).

If \(G\) is represented by an ind-affine ind-scheme, then \([f,f]=0\) for any \(f\in \operatorname{Lie} G(A)\), because in this case the \(A\)-algebra \( \operatorname{Lie} G(A)\) is isomorphic to the Lie \(A\)-algebra of all continuous left-translation-invariant \(A\)-derivations of the topological \(A\)-algebra \( {\mathcal O} (G_A)\) of regular functions on the ind-scheme \(G_A\). (See [12, Exp. II, Proposition 3.13, Theorem 4.1.4, and §4.11] for the case of right-translation-invariant \(A\)-derivations; the \(A\)-algebra \( \operatorname{Lie} G(A)\) is anti-isomorphic to the Lie \(A\)-algebra of such continuous derivations.)

Thus, in the case when \(G\) is represented by an ind-affine ind-scheme, the bracket \([ \kern1pt\cdot\kern1pt,\cdot\kern1pt ]\) on \( \operatorname{Lie} G\) defines the Lie \(A\)-algebra structure on the \(A\)-module \( \operatorname{Lie} G(A)\) for any commutative \(R\)-algebra \(A\).

Remark A.3.

It is also easy to see that \([f_1, f_2]\) does not depend on the choice of the liftings of \(f_1\) and \(f_2\) to \(G (A[\varepsilon_1,\varepsilon_2]/(\varepsilon_1^2, \varepsilon_2^2))\).

Appendix A.3. \(2\)-cocycles

We consider a central extension of group functors

$$1\to F\to \widetilde{G}{} \xrightarrow{\pi\,} G\to 1$$
such that there is a section \(\sigma\) of \(\pi\), but we do not require that \(\sigma\) should be a group section. We suppose that \(F\) and \(G\) are represented by group ind-affine ind-schemes. Then \( \widetilde{G}{} \) is also represented by a group ind-affine ind-scheme (here we use the fact that there is a section \(\sigma\)). The section \(\sigma\) gives a \(2\)-cocycle \(\Lambda\) on \(G\) with values in \(F\).

We obtain the corresponding central extension of Lie algebra-valued functors

$$0\to \operatorname{Lie} F\to \operatorname{Lie} \widetilde{G}{} \to \operatorname{Lie} G\to 0,$$
and \(\sigma\) induces a section \( \operatorname{Lie} G\to \operatorname{Lie} \widetilde{G}{} \). In the usual way (similarly to the case of central extensions of group functors in the proof of Proposition 2.2), this section gives a Lie algebra \(2\)-cocycle
$$\operatorname{Lie} \Lambda \colon\, \, \operatorname{Lie} G\times \operatorname{Lie} G\to \operatorname{Lie} F,$$
which can be explicitly obtained from the cocycle \(\Lambda\) in the following way.

Let \(h_1\) and \(h_2\) be from \( \operatorname{Lie} G(A)\), where \(A\) is any commutative \(R\)-algebra. We consider the elements \(h_i\) (\(i=1,2\)) as elements of \( \operatorname{Lie} G (A[\varepsilon_1,\varepsilon_2]/(\varepsilon_1^2, \varepsilon_2^2))\) through the embeddings

$$h_i\in \operatorname{Lie} G(A) \subset G(A[\varepsilon_i]/(\varepsilon_i^2)) \subset G (A[\varepsilon_1,\varepsilon_2]/(\varepsilon_1^2, \varepsilon_2^2)).$$
Then
$$\Upsilon (h_1,h_2) = \Lambda (h_1,h_2) \cdot \Lambda (h_2, h_1)^{-1}$$
is an element of the Lie \(A\)-algebra \( \operatorname{Lie} F(A) \subset F (A[\varepsilon_1 \varepsilon_2]/(\varepsilon_1^2 \varepsilon_2^2)) \subset F(A[\varepsilon_1,\varepsilon_2]/(\varepsilon_1^2,\varepsilon_2^2))\). This follows immediately from the diagram in Subsection A.2 written for the functor \(F\) and from the identity \(\Lambda(1, y)= \Lambda(y,1)= \Lambda(1,1)\), which follows from the cocycle identity for \(\Lambda\).

The proof of the following proposition is similar to the proof of Proposition 2.6.1 from [23] given in the case of a central extension of Lie groups. In our case we have to work over the ring \(A[\varepsilon_1,\varepsilon_2]/(\varepsilon_1^2, \varepsilon_2^2)\). Moreover, analogs of one-parameter subgroups are obtained from the functors over the subrings \(A[\varepsilon_i]/(\varepsilon_i^2)\), and an analog of the mixed second-order partial derivative is the functor over the subring \(A[\varepsilon_1 \varepsilon_2]/(\varepsilon_1^2 \varepsilon_2^2)\).

Proposition A.1.

We have \(\, \operatorname{Lie} \Lambda (h_1,h_2) = \Upsilon (h_2, h_2)\) for any \(\,h_1\) and \(\,h_2\) from the Lie \(\,A\)-algebra \(\, \operatorname{Lie} G(A)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osipov, D.V. Formal Bott–Thurston Cocycle and Part of a Formal Riemann–Roch Theorem. Proc. Steklov Inst. Math. 320, 226–257 (2023). https://doi.org/10.1134/S0081543823010108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543823010108

Navigation