Skip to main content
Log in

Projection Method for Infinite-Horizon Economic Growth Problems

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

A projection method is proposed for infinite-horizon economic growth problems. Exponentially discounted orthogonal Laguerre polynomials are used as the basis functions for the parameterization of the solution. The convergence of the method is studied numerically for integrable cases in the Ramsey model. It is shown that the best convergence of the method is achieved if the parameter in the exponent is chosen to be equal to the negative eigenvalue of the linearization matrix of the Hamiltonian system around a steady state at infinity. In the considered examples, the projection method leads to a system of equations with a small number of unknowns, in contrast to the methods using finite difference approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Notes

  1. In [5], instead of the exact solution, results of the projection method on a finite interval [3] were used to analyze convergence.

  2. In the paper [9], the inequality with the opposite sign is required to satisfy the balanced growth condition. In this case, there is no steady state \(k_{ss}\), and capital grows to infinity.

REFERENCES

  1. J. P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd ed. (Dover, New York, 2001).

    MATH  Google Scholar 

  2. W. H. Press, S. A. Teukolsky, T. Vetterling, and B. P. Flannery, Numerical Recipes, 3rd ed. (Cambridge Univ. Press, New York, 2007).

    MATH  Google Scholar 

  3. K. L. Judd, “Projection methods for solving aggregate growth models,” J. Econ. Theory 58 (2), 410–452 (1992). https://doi.org/10.1016/0022-0531(92)90061-L

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Miftakhova, K. Schmedders, and M. Schumacher, “Computing economic equilibria using projection methods,” Annu. Rev. Econ. 12, 317–353 (2020). https://doi.org/10.1146/annurev-economics-080218-025711

    Article  Google Scholar 

  5. K. L. Judd, “The parametric path method: An alternative to Fair–Taylor and L-B-J for solving perfect foresight models,” J. Econ. Dyn. Control. 26, (9–10), 1557–1583 (2002). https://doi.org/10.1016/S0165-1889(01)00085-9

    Article  MathSciNet  MATH  Google Scholar 

  6. O. J. Blanchard and S. Fischer, Lectures on Macroeconomics (MIT Press, Cambridge, 1993).

    Google Scholar 

  7. R. J. Barro and X. Sala-i-Martin, Economic Growth, 2nd ed. (MIT Press, Cambridge, 1995).

    MATH  Google Scholar 

  8. S. M. Aseev and A. V. Kryazhimskii, “The Pontryagin maximum principle and optimal economic growth problems,” Proc. Steklov Inst. Math. 257, 1–255 (2007). https://doi.org/10.1134/S0081543807020010

    Article  MathSciNet  MATH  Google Scholar 

  9. W. T. Smith, “A closed form solution to the Ramsey model,” J. Macroecon. 6 (1), 1–27 (2006). https://doi.org/10.2202/1534-6005.1356

    Article  Google Scholar 

  10. S. Lahiri, R. S. Eckaus, and M. Babiker, The Effects of Changing Consumption Patterns on the Costs of Emission Restrictions: Report No. 64 of the MIT Joint Program on the Science and Policy of Global Change (MIT Press, Cambridge, 2000).

    Google Scholar 

  11. N. B. Melnikov, B. C. O’Neill, and M. G. Dalton, “Accounting for household heterogeneity in general equilibrium economic growth models,” Energy Econ. 34 (5), 1475–1483 (2012). https://doi.org/10.1016/j.eneco.2012.06.010

    Article  Google Scholar 

  12. N. B. Melnikov, A. P. Gruzdev, M. G. Dalton, M. Weitzel, and B. C. O’Neill, “Parallel extended path method for solving perfect foresight models,” Comput. Econ. 58 (2), 517–534 (2021). https://doi.org/10.1007/s10614-020-10044-y

    Article  Google Scholar 

  13. R. Boháček and M. Kejak, Projection Methods for Economies with Heterogeneous Agents: CERGE-EI Working Paper No. 258 (Econ. Inst., Prague, 2005).

    MATH  Google Scholar 

  14. C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations (SIAM, Philadelphia, 1995).

    Book  MATH  Google Scholar 

  15. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes (Fizmatgiz, Moscow, 1961; Wiley, New York, 1962).

    MATH  Google Scholar 

  16. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1972).

    MATH  Google Scholar 

  17. J. B. Long and C. I. Plosser, “Real business cycles,” J. Polit. Econ. 91 (1), 39–69 (1983). https://doi.org/10.1086/261128

    Article  Google Scholar 

  18. N. Stokey and R. Lucas, Recursive Methods in Economic Dynamics (Harvard Univ. Press, Cambridge, 1989).

    Book  MATH  Google Scholar 

  19. F. Chang, “The inverse optimal problem: A dynamic programming approach,” Econometrica 56 (1), 147–172 (1988). https://doi.org/10.2307/1911845

    Article  MathSciNet  MATH  Google Scholar 

  20. B. M. Arystanbekov and N. B. Melnikov, “Generalized Galerkin method for an infinite time-horizon economic growth problem,” in Optimal Control Theory and Application: Proceedings of the International Conference, Yekaterinburg, Russia, 2022, pp. 281–285.

    Google Scholar 

  21. A. A. Krasovskii, P. D. Lebedev, and A. M. Tarasyev, “Bernoulli substitution in the Ramsey model: Optimal trajectories under control constraints,” Comput. Math. Math. Phys. 57 (5), 770–783 (2017). https://doi.org/10.1134/S0965542517050050

    Article  MathSciNet  MATH  Google Scholar 

  22. A. M. Oberman, “Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton–Jacobi equations and free boundary problems,” SIAM J. Numer.l Anal. 44 (2), 879–895 (2006). https://doi.org/10.1137/S0036142903435235

    Article  MathSciNet  MATH  Google Scholar 

  23. Y. Achdou, J. Han, J.-M. Lasry, P.-L. Lions, and B. Moll, “Income and wealth distribution in macroeconomics: A continuous-time approach,” Rev. Econ. Stud. 89 (1), 45–86 (2022). https://doi.org/10.1093/restud/rdab002

    Article  MathSciNet  MATH  Google Scholar 

  24. W. T. Smith, “Inspecting the mechanism exactly: A closed-form solution to a stochastic growth model,” J. Macroecon. 7 (1), 1–31 (2007). https://doi.org/10.2202/1935-1690.1524

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. M. Arystanbekov or N. B. Melnikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated from Trudy Instituta Matematiki i Mekhaniki UrO RAN, Vol. 28, No. 3, pp. 17 - 29, 2022 https://doi.org/10.21538/0134-4889-2022-28-3-17-29.

Translated by E. Vasil’eva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arystanbekov, B.M., Melnikov, N.B. Projection Method for Infinite-Horizon Economic Growth Problems. Proc. Steklov Inst. Math. 319 (Suppl 1), S54–S65 (2022). https://doi.org/10.1134/S0081543822060062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543822060062

Keywords

Navigation