Skip to main content
Log in

On the \(\mathfrak{F}\)-Norm of a Finite Group

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

Let \(G\) be a finite group, and let \(\mathfrak{F}\) be a nonempty formation. Then the intersection of the normalizers of the \(\mathfrak{F}\)-residuals of all subgroups of \(G\) is called the \(\mathfrak{F}\)-norm of \(G\) and is denoted by \(N_{\mathfrak{F}}(G)\). A group \(G\) is called \(\mathfrak{F}\)-critical  if \(G\not\in\mathfrak{F}\), but \(U\in\mathfrak{F}\) for any proper subgroup \(U\) of \(G\). We say that a finite group \(G\) is generalized \(\mathfrak{F}\)-critical  if \(G\) contains a normal subgroup \(N\) such that \(N\leq\Phi(G)\) and the quotient group \(G/N\) is \(\mathfrak{F}\)-critical. In this publication, we prove the following result: If \(G\) does not belong to the nonempty hereditary formation \(\mathfrak{F},\) then the \(\mathfrak{F}\)-norm \(N_{\mathfrak{F}}(G)\) of \(G\) coincides with the intersection of the normalizers of the \(\mathfrak{F}\)-residuals of all generalized \(\mathfrak{F}\)-critical subgroups of \(G\). In particular\(,\) the norm \(N(G)\) of \(G\) coincides with the intersection of the normalizers of all cyclic subgroups of \(G\) of prime power order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. A. Shemetkov, Formations of Finite Groups (Nauka, Moscow, 1978) [in Russian].

    MATH  Google Scholar 

  2. A. Ballester-Bolinches and L. M. Ezquerro, Classes of Finite Groups (Springer, New York, Dordrecht, 2006).

    MATH  Google Scholar 

  3. K. Doerk and T. Hawkes, Finite Soluble Groups, (De Gruyter, Berlin, 1992).

    Book  MATH  Google Scholar 

  4. A. I. Mal’tsev, Algebraic Systems (Nauka, Moscow, 1970; Springer, Berlin, 2011).

    MATH  Google Scholar 

  5. R. Baer, “Der Kern, eine charakteristische Untergruppe,” Compos. Math. 1, 254–283 (1935).

    MATH  MathSciNet  Google Scholar 

  6. R. Baer, “Norm and hypernorm,” Publ. Math. 4, 347–350 (1956).

    MATH  MathSciNet  Google Scholar 

  7. S. Li and Z. Shen, “On the intersection of the normalizers of derived subgroups of all subgroups of a finite group,” J. Algebra, 323 (5), 1349–1357 (2010). https://doi.org/10.1016/j.jalgebra.2009.12.015

    Article  MATH  MathSciNet  Google Scholar 

  8. Z. Shen, W. Shi, and G. Qian, “On the norm of the nilpotent residuals of all subgroups of a finite group,” J. Algebra 352 (1), 290–298 (2012). https://doi.org/10.1016/j.jalgebra.2011.11.018

    Article  MATH  MathSciNet  Google Scholar 

  9. N. Su and Y. Wang, “On the normalizers of \(\mathfrak{F}\)-residuals of all subgroups of a finite group,” J. Algebra 392, 185–198 (2013). https://doi.org/10.1016/j.jalgebra.2013.06.037

    Article  MATH  MathSciNet  Google Scholar 

  10. B. Hu, J. Huang, and A. N. Skiba, “On the \(\sigma\)-nilpotent norm and the \(\sigma\)-nilpotent length of a finite group,” Glasgow Math. J. 63 (1), 121–132 (2020). https://doi.org/10.1017/S0017089520000051

    Article  MATH  MathSciNet  Google Scholar 

  11. Y. Lin, Y. Gong, and Z. Shen, “On the generalized norms of a group,” Comm. Algebra 49 (9), 4092–4097 (2021). https://doi.org/10.1080/00927872.2021.1913501

    Article  MATH  MathSciNet  Google Scholar 

  12. M. J. Alejande and A. Ballester-Bolinches, “On a theorem of Berkovich,” Israel Math. J. 131, 149–156 (2002). https://doi.org/10.1007/BF02785855

    Article  MATH  MathSciNet  Google Scholar 

  13. Y. Berkovich, “Some corollaries to Frobenius’ normal \(p\)-complement theorem,” Proc. Amer. Math. Soc. 127 (9), 2505–2509 (1999). https://doi.org/10.1090/S0002-9939-99-05275-2

    Article  MATH  MathSciNet  Google Scholar 

  14. B. Huppert, Endliche Gruppen I  (Springer, Berlin, 1967).

    Book  MATH  Google Scholar 

  15. D. Gorenstein, Finite Groups (Harper & Row, New York, 1968).

    MATH  Google Scholar 

  16. A. N. Skiba, “On \(\sigma\)-subnormal and \(\sigma\)-permutable subgroups of finite groups,” J. Algebra 436, 1–16 (2015). https://doi.org/10.1016/j.jalgebra.2015.04.010

    Article  MATH  MathSciNet  Google Scholar 

  17. V. A. Belonogov, “Finite groups all of whose 2-maximal subgroups are \(\pi\)-decomposable,” Proc. Steklov Inst. Math. 289 (Suppl. 1), S26–S41 (2015). https://doi.org/10.1134/S008154381505003X

    Article  MATH  MathSciNet  Google Scholar 

Download references

Funding

The second author was supported by the Ministry of Education of the Republic of Belarus (project no. 20211328), and the third author was supported by the Belarusian Republican Foundation for Fundamental Research (grant no. F20R-291).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. N. Ryzhik, I. N. Safonova or A. N. Skiba.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated from Trudy Instituta Matematiki i Mekhaniki UrO RAN, Vol. 28, No. 1, pp. 232 - 238, 2022 https://doi.org/10.21538/0134-4889-2022-28-1-232-238.

Translated by E. Vasil’eva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryzhik, V.N., Safonova, I.N. & Skiba, A.N. On the \(\mathfrak{F}\)-Norm of a Finite Group. Proc. Steklov Inst. Math. 317 (Suppl 1), S136–S141 (2022). https://doi.org/10.1134/S0081543822030129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543822030129

Keywords

Navigation