Skip to main content
Log in

On the Baer–Suzuki Width of Some Radical Classes

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

Let \(\sigma=\{\sigma_{i}\mid i\in I\}\) be a fixed partition of the set of all primes into pairwise disjoint nonempty subsets \(\sigma_{i}\). A finite group is called \(\sigma\)-nilpotent if it has a normal \(\sigma_{i}\)-Hall subgroup for any \(i\in I\). Any finite group possesses a \(\sigma\)-nilpotent radical, which is the largest normal \(\sigma\)-nilpotent subgroup. In this note, it is proved that there exists an integer \(m=m(\sigma)\) such that the \(\sigma\)-nilpotent radical of any finite group coincides with the set of elements \(x\) such that any \(m\) conjugates of \(x\) generate a \(\sigma\)-nilpotent subgroup. Other possible analogs of the classical Baer–Suzuki theorem are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The original definition from [6] requires only the radicality of the class \(\mathfrak{X}\); however, as follows from the definition, it is natural to assume a priori that the class \(\mathfrak{X}\) is also closed under taking subgroups.

  2. Formally, it was proved in [16] that the Baer–Suzuki width of the class of all groups of odd order is at most 2. However, it easily follows that \({\operatorname{BS}(\mathfrak{\mathfrak{G}_{\pi}})\leq 2}\) for any set \(\pi\) of odd primes. The latter was proved independently, although much later, in [17, Theorem 1].

REFERENCES

  1. L. A. Shemetkov, Formations of Finite Groups (Nauka, Moscow, 1978) [in Russian].

    MATH  Google Scholar 

  2. A. N. Skiba, “On \(\sigma\)-subnormal and \(\sigma\)-permutable subgroups of finite groups,” J. Algebra 436, 1–16 (2015). https://doi.org/10.1016/j.jalgebra.2015.04.010

    Article  MATH  MathSciNet  Google Scholar 

  3. A. N. Skiba, “On some results in the theory of finite partially soluble groups,” Comm. Math. Stat. 4 (3), 281-309 (2016). https://doi.org/10.1007/s40304-016-0088-z

    Article  MATH  MathSciNet  Google Scholar 

  4. R. Baer, “Engelsche Elemente Noetherscher Gruppen,” Math. Ann. 133 (3), 256–270 (1957). https://doi.org/10.1007/BF02547953

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Suzuki, “Finite groups in which the centralizer of any element of order 2 is 2-closed,” Ann. Math. 82 (1), 191–212 (1965). https://doi.org/10.2307/1970569

    Article  MATH  MathSciNet  Google Scholar 

  6. N. Gordeev, F. Grunewald, B. Kunyavskii, and E. Plotkin, “A description of Baer–Suzuki type of the solvable radical of a finite group,” J. Pure Appl. Algebra 213 (2), 250–258 (2009). https://doi.org/10.1016/j.jpaa.2008.06.006

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Alperin and R. Lyons, “On conjugacy classes of \(p\)-elements,” J. Algebra 19 (2), 536–537 (1971). https://doi.org/10.1016/0021-8693(71)90086-X

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Gorenstein, Finite Groups, 2nd ed. (Chelsea, New York, 1980).

    MATH  Google Scholar 

  9. N. Gordeev, F. Grunewald, B. Kunyavskii, and E. Plotkin, “Baer–Suzuki theorem for the solvable radical of a finite group,” C. R. Acad. Sci. Paris, Ser. I 347 (5–6), 217–222 (2009). https://doi.org/10.1016/j.crma.2009.01.004

    Article  MATH  MathSciNet  Google Scholar 

  10. N. Gordeev, F. Grunewald, B. Kunyavskii, and E. Plotkin, “From Thompson to Baer–Suzuki: A sharp characterization of the solvable radical,” J. Algebra 323 (10), 2888–2904 (2010). https://doi.org/10.1016/j.jalgebra.2010.01.032

    Article  MATH  MathSciNet  Google Scholar 

  11. P. Flavell, S. Guest, and R. Guralnick, “Characterizations of the solvable radical,” Proc. Amer. Math. Soc. 138 (4), 1161–1170 (2010). https://doi.org/10.1090/S0002-9939-09-10066-7

    Article  MATH  MathSciNet  Google Scholar 

  12. S. Guest, “A solvable version of the Baer–Suzuki theorem,” Trans. Amer. Math. Soc. 362 (11), 5909–5946 (2010). https://doi.org/10.1090/S0002-9947-2010-04932-3

    Article  MATH  MathSciNet  Google Scholar 

  13. N. Yang, D. O. Revin, and E. P. Vdovin, “Baer–Suzuki theorem for the \(\pi\)-radical,” Isr. J. Math. 245 (1), 173–207 (2021). https://doi.org/10.1007/s11856-021-2209-y

    Article  MATH  MathSciNet  Google Scholar 

  14. N. Yang, Z. Wu, and D. O. Revin, “On the sharp Baer–Suzuki theorem for the \(\pi\)-radical: Sporadic groups,” Sib. Math. J. 63 (2), 387–394 (2022). https://doi.org/10.1134/S0037446622020161

    Article  MATH  MathSciNet  Google Scholar 

  15. N. Yang, Z. Wu, and D. O. Revin, “On the sharp Baer–Suzuki theorem for the \(\pi\)-radical,” accepted in Sb. Math. (2022). https://arxiv.org/pdf/2105.02442.pdf

  16. V. N. Tyutyanov, “A criterion of non-simplicity for a finite group,” Izv. Gomel. Gos. Univ. Im. F. Skoriny. Vopr. Algebry 16 (3), 125–137 (2000).

    MATH  Google Scholar 

  17. D. O. Revin, “On Baer–Suzuki \(\pi\)-theorems,” Sib. Math. J. 52 (2), 340–347 (2011). https://doi.org/10.1134/S0037446611020170

    Article  MATH  MathSciNet  Google Scholar 

  18. H. Wielandt, “Zusammengesetzte Gruppen: Hölders Programm heute,” Proc. Sympos. Pure Math. 37, 161–173 (1980). https://doi.org/10.1090/pspum/037/604575

    Article  MATH  Google Scholar 

  19. The Kourovka Notebook : Unsolved Problems in Group Theory, Ed. by V. D. Mazurov and E. I. Khukhro., 20th ed. (Izd. Inst. Mat. SO RAN, Novosibirsk, 2014). https://kourovkanotebookorg.files.wordpress.com/2022/02/ 20tkt-3.pdf

    MATH  Google Scholar 

  20. I. M. Isaacs, Character Theory of Finite Groups (Academic, New York, 1976), Ser. Pure Appl. Math., Vol. 359.

    MATH  Google Scholar 

Download references

Funding

J. Guo and W. Guo were supported by the National Natural Science Foundation of China (project nos. 11961017 and 12171126). D. O. Revin and V. N. Tyutyanov were supported by the joint grant of the Russian Foundation for Basic Research (project no. 20-51-00007) and the Belarusian Republican Foundation for Fundamental Research (project no. F20R-291). D. O. Revin was also supported by the Program for Fundamental Research of the Russian Academy of Sciences (project no. FWNF-2022-0002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Guo, W. Guo, D. O. Revin or V. N. Tyutyanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated from Trudy Instituta Matematiki i Mekhaniki UrO RAN, Vol. 28, No. 2, pp. 96 - 105, 2022 https://doi.org/10.21538/0134-4889-2022-28-2-96-105.

Translated by E. Vasil’eva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Guo, W., Revin, D.O. et al. On the Baer–Suzuki Width of Some Radical Classes. Proc. Steklov Inst. Math. 317 (Suppl 1), S90–S97 (2022). https://doi.org/10.1134/S0081543822030075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543822030075

Keywords

Navigation