Skip to main content
Log in

On the Spectral Gap and the Diameter of Cayley Graphs

  • Research Articles
  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We obtain a new bound connecting the first nontrivial eigenvalue of the Laplace operator on a graph and the diameter of the graph. This bound is effective for graphs with small diameter as well as for graphs with the number of maximal paths comparable to the expected value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Bassalygo and M. S. Pinsker, “On the complexity of an optimal non-blocking commutation scheme without reorganization,” Probl. Inf. Transm. 9, 64–66 (1974) [transl. from Probl. Peredachi Inf. 9 (1), 84–87 (1973)].

    MATH  Google Scholar 

  2. J. Bourgain, “On triples in arithmetic progression,” Geom. Funct. Anal. 9 (5), 968–984 (1999).

    Article  MathSciNet  Google Scholar 

  3. P. Diaconis and L. Saloff-Coste, “Comparison techniques for random walk on finite groups,” Ann. Probab. 21 (4), 2131–2156 (1993).

    Article  MathSciNet  Google Scholar 

  4. P. Erdős and P. Turán, “On a problem of Sidon in additive number theory, and on some related problems,” J. London Math. Soc. 16, 212–215 (1941).

    Article  MathSciNet  Google Scholar 

  5. E. Kowalski, An Introduction to Expander Graphs (Soc. Math. France, Paris, 2019).

    MATH  Google Scholar 

  6. V. F. Lev, “Distribution of points on arcs,” Integers 5 (2), A11 (2005).

    MathSciNet  MATH  Google Scholar 

  7. A. Lubotzky, Discrete Groups, Expanding Graphs and Invariant Measures (Birkaüser, Basel, 1994), Prog. Math. 125.

    Book  Google Scholar 

  8. G. A. Margulis, “Explicit group-theoretical constructions of combinatorial schemes and their application to the design of expanders and concentrators,” Probl. Inf. Transm. 24, 39–46 (1988) [transl. from Probl. Peredachi Inf. 24 (1), 51–60 (1988)].

    MATH  Google Scholar 

  9. N. G. Moshchevitin, “On numbers with missing digits: An elementary proof of a result due to S. V. Konyagin,” Chebyshev. Sb. 3 (2), 93–99 (2002).

    MathSciNet  MATH  Google Scholar 

  10. M. A. Naimark, Theory of Group Representations (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  11. K. O’Bryant, “A complete annotated bibliography of work related to Sidon sequences,” Electron. J. Comb. DS11, 1–39 (2004).

    MATH  Google Scholar 

  12. M. S. Pinsker, “On the complexity of a concentrator,” in 7th International Teletraffic Congress (ITC, Stockholm, 1973), pp. 318/1–318/4.

    Google Scholar 

  13. L. Saloff-Coste, “Lectures on finite Markov chains,” in Lectures on Probability Theory and Statistics (Springer, Berlin, 1997), Lect. Notes Math. 1665, pp. 301–413.

    Chapter  Google Scholar 

  14. T. Sanders, “A quantitative version of the non-abelian idempotent theorem,” Geom. Funct. Anal. 21 (1), 141–221 (2011); arXiv: 0912.0308 [math.CA].

    Article  MathSciNet  Google Scholar 

  15. T. Sanders, “Approximate groups and doubling metrics,” Math. Proc. Cambridge Philos. Soc. 152 (3), 385–404 (2012).

    Article  MathSciNet  Google Scholar 

  16. T. Sanders, “Applications of commutative harmonic analysis,” Preprint (Math. Inst., Univ. Oxford, Oxford, 2015), http://people.maths.ox.ac.uk/~sanders/acha/notes.pdf.

  17. P. Sarnak and X. Xue, “Bounds for multiplicities of automorphic representations,” Duke Math. J. 64 (1), 207–227 (1991).

    Article  MathSciNet  Google Scholar 

  18. J.-P. Serre, Représentations linéaires des groupes finis (Hermann, Paris, 1967), Collections Méthodes.

    MATH  Google Scholar 

  19. T. Tao and V. H. Vu, Additive Combinatorics (Cambridge Univ. Press, Cambridge, 2006), Cambridge Stud. Adv. Math. 105.

    Book  Google Scholar 

  20. A. A. Yudin, “On the measure of the large values of the modulus of a trigonometric sum,” in Number-Theoretic Studies in the Markov Spectrum and in the Structural Theory of Set Addition (Kalininsk. Gos. Univ., Moscow, 1973), pp. 163–174 [in Russian].

    Google Scholar 

Download references

Funding

This work is supported by the Russian Science Foundation under grant 19-11-00001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Shkredov.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2021, Vol. 314, pp. 318–337 https://doi.org/10.4213/tm4199.

Appendix

Here we collect further natural properties of Bohr sets and related notions which have well-known abelian analogs. We do this for the convenience of the reader interested in this particular form of Bohr sets; most of these results are more or less contained in [2, 14, 15].

In Section 5 we have used the connection of Bohr sets with the set of unitary representations \(\rho\) such that \(\| \widehat{A}{} (\rho) \| \ge (1-\varepsilon) |A|\) for a given set \(A\subseteq {\mathbf G} \). Thus it is natural to give a more general

Definition 25.

Let \(A\subseteq {\mathbf G} \) be a set and \(\varepsilon \in [0,1]\) a real number. The spectrum \( \mathrm{Spec} _\varepsilon(A)\) of \(A\) is the set of unitary representations

$$\mathrm{Spec} _\varepsilon(A) = \bigl\{\rho \colon\, \,\| \widehat{A}{} (\rho)\| \ge \varepsilon |A|\bigr\}.$$

Using the arguments of the proof of Lemma 17, we obtain a non-abelian analog of the well-known result of Yudin [20].

Proposition 26.

Let \(A\subseteq {\mathbf G} \) be a set and \(\varepsilon_1, \varepsilon_2 \in [0,1]\) real numbers. Then

$$\mathrm{Spec} _{1-\varepsilon_1}(A) \cdot \mathrm{Spec} _{1-\varepsilon_2}(A) \subseteq \mathrm{Spec} _{1-\varepsilon_1 - \varepsilon_2}(A).$$

Proof.

As follows from the arguments of the proof of Lemma 17 (see estimate (5.2)), a unitary representation \(\rho\) belongs to \( \mathrm{Spec} _{1-\varepsilon}(A)\) if and only if

$$\Biggl\| \sum_{g\in {\mathbf G} } (A * A^{-1})(g) (I - \rho(g)) \Biggr\| \le (2 \varepsilon - \varepsilon^2) |A|^2 = \bigl(1-(1-\varepsilon)^2\bigr)|A|^2.$$
However,
$$ I-\rho_1(g) \rho_2(g) = (I-\rho_1(g)) \rho_2(g) + I - \rho_2(g)$$
(A.1)
and hence, by the triangle inequality for the operator norm, we get
$$\Biggl\|\sum_{g\in {\mathbf G} } (A * A^{-1})(g) (I - \rho_1(g) \rho_2(g))\Biggr\| \le \bigl(2 \varepsilon_1 - \varepsilon^2_1 + 2 \varepsilon_2 - \varepsilon^2_2\bigr) |A|^2 = \bigl(1-(1- \varepsilon_1-\varepsilon_2)^2\bigr) |A|^2,$$
as required. \(\quad\Box\)

Our next result shows that \( \operatorname{Bohr} (\rho,\delta)\) has small product set and hence it suffices to check the condition of smallness of the quantity \(\sigma^{(d)}_P (B) \le 1-\alpha\) in Theorem 18 only for sets with small product.

Proposition 27.

Let \(\delta \in [0,2/5]\) be a real number and \(\rho\) a unitary representation. Then

$$\bigl| \operatorname{Bohr} (\rho,\delta) \operatorname{Bohr} (\rho,\delta)\bigr| \le 2^{21 d_\rho^2/2} \mathopen| \operatorname{Bohr} (\rho,\delta)|$$
and there are sets \(X,Y \subseteq {\mathbf G} ,\) \(|X|,|Y|< 2^{25 d_\rho^2},\) such that
$$\operatorname{Bohr} (\rho,\delta) \subseteq \operatorname{Bohr} \biggl( \rho,\frac\delta 2 \biggr) X \qquad\textit{and}\qquad \operatorname{Bohr} (\rho,\delta) \subseteq Y \operatorname{Bohr} \biggl( \rho,\frac\delta 2 \biggr).$$

Proof.

Let \(k=d_\rho\). In view of (5.1) it is enough to compare \(\mathopen| \operatorname{Bohr} (\rho,\delta)|\) and \(\mathopen| \operatorname{Bohr} (\rho,2\delta)|\). Further, one can check that \(2(1-\cos \theta) \le \theta^2\) and \(2(1-\cos \theta) \ge \theta^2/2\) for \(|\theta|\le \sqrt{6}\). Put

$$\eta := \eta (\delta) = \frac{1}{2\pi} \arccos \biggl( 1 - \frac{\delta^2}{2} \biggr).$$
We have \(\delta/(2\pi)\le \eta(\delta) \le \delta/\pi\). Let \(U(\delta)\) be the set of unitary matrices \(U\) such that \(\|U - I\| \le \delta\). In [14, Lemma 17.4] it was proved that the Haar measure \(\mu\) of \(U(\delta)\) equals
$$ \begin{aligned} \, \mu(U(\delta)) &= \frac{1}{k!} \intop_{-\eta}^{\eta} \dots \intop_{-\eta}^{\eta} \prod_{1\le n<m \le k} \bigl|e^{2\pi i \theta_n} - e^{2\pi i \theta_m}\bigr|^2 \,d\theta_1 \dots d\theta_k \\[3pt] &= \frac{1}{k!} \intop_{-\eta}^{\eta} \dots \intop_{-\eta}^{\eta} \prod_{1\le n<m \le k} 2\bigl(1-\cos(2\pi(\theta_n-\theta_m))\bigr) \,d\theta_1 \dots d\theta_k. \end{aligned}$$
(A.2)
Put
$$F(k) = \frac{(2\pi)^{k(k-1)}}{k!} \intop_{-1}^1 \dots \intop_{-1}^1 \prod_{1\le n<m \le k} (\theta_n-\theta_m)^2 \,d\theta_1 \dots d\theta_k.$$
From (A.2) and our bounds for \(2(1-\cos \theta)\), it follows that
$$2^{-k(k-1)/2}\, \eta^{k^2} F(k) \le \mu(U(\delta)) \le \eta^{k^2} F(k),$$
because \(4\pi \eta(1) =2\pi/3 \le \sqrt{6}\). Using the assumption \(\delta \le 2/5\) and the previous formula, we obtain
$$ \frac{\mu(U(5\delta/2))}{\mu(U(\delta/2))} \le 2^{k(k-1)/2} \,\frac{\eta(5\delta/2)^{k^2}}{\eta(\delta/2)^{k^2}} \le 2^{k(k-1)/2} \cdot 2^{10k^2} < 2^{21k^2/2}.$$
(A.3)
Now let \(V = \rho ( {\mathbf G} )\). It is easy to see that \(\mathopen| \operatorname{Bohr} (\rho,\delta)| \ge |V\cap U(\delta/2) u|\) for any unitary matrix \(u\), because \(U(\delta/2) u (U(\delta/2) u)^{-1} \subseteq U(\delta)\). Further, integrating with respect to the Haar measure, we get in view of (A.3)
$$\begin{aligned} \, \mathopen| \operatorname{Bohr} (\rho,2\delta)| &= \biggl(\mu\biggl(U\biggl( \frac\delta 2 \biggr)\!\biggr)\!\biggr)^{\!-1} \intop \biggl|\rho( \operatorname{Bohr} (\rho,2\delta)) \cap U\biggl( \frac\delta 2 \biggr) u\biggr|\,du \\[4pt] &\le \mathopen| \operatorname{Bohr} (\rho,\delta)| \frac{\mu(U(5\delta/2))}{\mu(U(\delta/2))} < 2^{21k^2/2} \kern1pt \mathopen| \operatorname{Bohr} (\rho,\delta)|. \end{aligned}$$

Now by the Ruzsa covering lemma (see, e.g., [19]) one finds \(X\) (and similarly \(Y\)) such that

$$\operatorname{Bohr} (\rho,\delta) \subseteq \operatorname{Bohr} \biggl( \rho,\frac\delta 4 \biggr) \operatorname{Bohr} ^{-1}\biggl( \rho,\frac\delta 4 \biggr) \kern1pt X \subseteq \operatorname{Bohr} \biggl( \rho,\frac\delta 2 \biggr) \kern1pt X,$$
where, as above,
$$|X| \le \frac{\mathopen| \operatorname{Bohr} (\rho,5\delta/4)|}{\mathopen| \operatorname{Bohr} (\rho,\delta/4)|} \le \frac{\mu( \operatorname{Bohr} (\rho,11\delta/8))}{\mu( \operatorname{Bohr} (\rho,\delta/8))} \le 2^{k(k-1)/2}\, \frac{\eta(11\delta/8)^{k^2}}{\eta(\delta/8)^{k^2}} < 2^{25 k^2}.$$
This completes the proof. \(\quad\Box\)

Having a lower bound for the size of one-dimensional Bohr sets (see [14, Lemma 17.3] or the proposition above), one can obtain a lower bound for the size of Bohr sets with an arbitrary \(\Gamma\).

Proposition 28.

Let \( \operatorname{Bohr} (\rho_j,\delta_j),\) \(j=1,\dots,k,\) be Bohr sets such that \(\delta_1 \le \delta_2 \le \dots \le \delta_k\). Then

$$\bigl| \operatorname{Bohr} (\{\rho_1,\dots,\rho_k\}, \delta_k)\bigr| \ge | {\mathbf G} |^{-1} \prod_{j=1}^k \biggl| \operatorname{Bohr} \biggl(\rho_j,\frac{\delta_j}2 \biggr)\biggr|.$$

Proof.

Let \(B = \operatorname{Bohr} (\{\rho_1,\dots,\rho_k\}, \delta_k)\) and \(B_j = \operatorname{Bohr} (\rho_j, \delta_j/2)\), \(j=1,2,\dots,k\). Clearly, for any \(j\) one has \(B_j B^{-1}_j \subseteq B\). Hence

$$ \begin{aligned} \, \sigma:= {}&\mathopen{}\sum_{x\in {\mathbf G} } (B_1 * B^{-1}_1)(x) \dots (B_k * B^{-1}_k)(x) = \sum_{x\in B} (B_1 * B^{-1}_1)(x) \dots (B_k * B^{-1}_k)(x) \\[4pt] \le{}& |B|\cdot |B_1|\cdot \dots\cdot |B_k|. \end{aligned}$$
(A.4)
On the other hand, in view of formulas (2.4) and (2.5), we get
$$ \sigma = \frac{1}{| {\mathbf G} |} \sum_{\rho} d_\rho \bigl< \widehat{B}{} _1 (\rho) \widehat{B}^*_1 (\rho) \dots \widehat{B}{} _{k-1} (\rho) \widehat{B}{} ^*_{k-1} (\rho), \widehat{B}{} _k (\rho) \widehat{B}{} ^*_k (\rho) \bigr> \ge \frac{|B_1|^2 \dots |B_k|^2}{| {\mathbf G} |},$$
(A.5)
because the operators \( \widehat{B}{} _1 (\rho) \widehat{B}{} ^*_1 (\rho)\) are Hermitian and positive semidefinite. Comparing (A.4) and (A.5), we obtain the result. \(\quad\Box\)

A Bohr set \( \operatorname{Bohr} (\rho,\delta)\) is said to be regular if

$$\bigl| \mathopen| \operatorname{Bohr} (\rho,(1+\kappa)\delta)| - \mathopen| \operatorname{Bohr} (\rho,\delta)| \bigr| \le 100 \kern1pt d^2_\rho |\kappa| \cdot \mathopen| \operatorname{Bohr} (\rho,\delta)|$$
whenever \(|\kappa| \le 1/(100 d^2_\rho)\). Even in the abelian case it is easy to see that not every Bohr set is regular (see, e.g., [19, Sect. 4.4]). Nevertheless, it was shown in [2] that for \( {\mathbf G} = {\mathbb Z}/N{\mathbb Z}\) one can find a regular Bohr set by slightly decreasing the parameter \(\delta\). We show the same for general groups, repeating the arguments from [19, Lemma 4.25] (see also [14, Lemma 9.3]).

Proposition 29.

Let \(\delta \in [0,1/2]\) be a real number and \(\rho\) a unitary representation. Then there is a \(\delta_1 \in [\delta,2\delta]\) such that \( \operatorname{Bohr} (\rho,\delta_1)\) is regular.

Proof.

Consider the nondecreasing function \(f \colon\, [0,1] \to {\mathbb R}\) defined as

$$f(a) := d^{-2}_\rho \log \mu( \operatorname{Bohr} (\rho,2^a \delta)).$$
By the first part of Proposition 27, we have \(f(1)- f(0) \le \log (21/2)\). Clearly, if we could find \(a\in [0.1, 0.9]\) such that \(|f(a) - f(a')| \le 25|a-a'|\) for all \(|a'-a| \le 0.1\), then the set \( \operatorname{Bohr} (\rho,2^a \delta)\) would be regular. If there is no such \(a\), then for every \(a\) from this interval there is an interval \(I_a\), \(a\in I_a\), \(|I_a| \le 0.1\), with \(\intop_{I_a}df> 25|I_a|\). Obviously, these intervals cover \([0.1, 0.9]\), and by the Vitali covering lemma (see, e.g., [19, Sect. 4.4]) one can find a finite subcollection of disjoint intervals of total measure at least \(0.8/5\), say. Then
$$\log \frac{21}2 \ge \intop_0^1\! df \ge 25 \cdot \frac{0.8}{5} = 4,$$
which is a contradiction. \(\quad\Box\)

Finally, let us say something nontrivial about the spectrum of regular Bohr sets.

Proposition 30.

Let \(B= \operatorname{Bohr} (\rho,\delta)\) be a regular Bohr set and \(B' = \operatorname{Bohr} (\rho,\delta'),\) where \(\delta' \le \kappa \delta/(100 d_\rho^2)\) and \(\kappa \in (0,1)\) is a real number. Then

$$\mathrm{Spec} _{\varepsilon} (B) \subseteq \mathrm{Spec} _{1-{2\kappa}/{\varepsilon}} (B').$$

Proof.

Let \(\pi \in \mathrm{Spec} _{\varepsilon} (B)\). Let also \(B^\pm = \operatorname{Bohr} (\rho,\delta\pm\delta')\). We have

$$ \begin{aligned} \, \varepsilon |B| \le \| \widehat{B}{} (\pi) \| &\le |B'|^{-1} \| \widehat{B}{} (\pi)\|\cdot\| \widehat{B}{} ' (\pi)\| + \Biggl\| \sum_x \bigl(B(x) - |B'|^{-1} (B*B')(x)\bigr) \pi(x) \Biggr\| \\[4pt] &\le |B'|^{-1} \| \widehat{B}{} (\pi)\|\cdot\| \widehat{B}{} ' (\pi)\| + \sum_x \bigl|B(x) - |B'|^{-1} (B*B')(x)\bigr|. \end{aligned}$$
(A.6)
It is easy to see that the summation in (A.6) is taken over \(B^+\setminus B^-\). By the regularity of \(B\) one can estimate this sum as \(2\kappa |B|\). Hence
$$\| \widehat{B}{} ' (\pi)\| \ge |B'| \bigl(1-2\kappa |B|\cdot\| \widehat{B}{} (\pi)\|^{-1}\bigr) \ge |B'| (1-2\kappa \varepsilon^{-1})$$
or, in other words, \(\pi \in \mathrm{Spec} _{1-2\kappa\varepsilon^{-1}} (B')\). This completes the proof. \(\quad\Box\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shkredov, I.D. On the Spectral Gap and the Diameter of Cayley Graphs. Proc. Steklov Inst. Math. 314, 307–324 (2021). https://doi.org/10.1134/S0081543821040167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543821040167

Navigation