Skip to main content
Log in

Spectral stability theory of heteroclinic solutions to the Korteweg-de Vries-Burgers equation with an arbitrary potential

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

The analysis of stability of heteroclinic solutions to the Korteweg–de Vries–Burgers equation is generalized to the case of an arbitrary potential that gives rise to heteroclinic states. An example of a specific nonconvex potential is given for which there exists a wide set of heteroclinic solutions of different types. Stability of the corresponding solutions in the context of uniqueness of a solution to the problem of decay of an arbitrary discontinuity is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Alexander and R. Sachs, “Linear instability of solitary waves of a Boussinesq type equation: A computer assisted computation,” Nonlinear World 2(4), 471–507 (1995).

    MathSciNet  MATH  Google Scholar 

  2. A. P. Chugainova, “Nonstationary Solutions of a Generalized Korteweg–de Vries–Burgers Equation,” Tr. Mat. Inst. im._V.A. Steklova, Ross. Akad. Nauk 281, 215–223 (2013) [Proc. Steklov Inst. Math. 281, 204–212 (2013)].

    MathSciNet  MATH  Google Scholar 

  3. A. P. Chugainova, A. T. Il’ichev, A. G. Kulikovskii, and V. A. Shargatov, “Problem of an arbitrary Selection conditions for thdiscontinuity disintegration for the generalized Hopf equation: e unique solution,” IMA J. Appl. Math. (in press).

  4. A. P. Chugainova and V. A. Shargatov, “Stability of nonstationary solutions of the generalized KdV–Burgers equation,” Zh. Vychisl. Mat. Mat. Fiz. 55(2), 253–266 (2015) [Comput. Math. Math. Phys. 55, 251–263 (2015)].

    MathSciNet  MATH  Google Scholar 

  5. A. P. Chugainova and V. A. Shargatov, “Stability of discontinuity structures described by a generalized KdV–Burgers equation,” Zh. Vychisl. Mat. Mat. Fiz. 56(2), 259–274 (2016) [Comput. Math. Math. Phys. 56, 263–277 (2016)].

    MathSciNet  MATH  Google Scholar 

  6. I. M. Gel’fand, “Some problems in the theory of quasilinear equations,” Usp. Mat. Nauk 14(2), 87–158 (1959) [Am. Math. Soc. Transl., Ser. 2, 29, 295–381 (1963)].

    MathSciNet  MATH  Google Scholar 

  7. S. K. Godunov, “On nonunique ‘blurring’ of discontinuities in solutions of quasilinear systems,” Dokl. Akad. Nauk SSSR 136(2), 272–273 (1961) [Sov. Math., Dokl. 2, 43–44 (1961)].

    MathSciNet  MATH  Google Scholar 

  8. S. K. Godunov and E. I. Romenskii, Elements of Continuum Mechanics and Conservation Laws (Kluwer, New York, 2003).

    Book  MATH  Google Scholar 

  9. A. T. Il’ichev, “Envelope solitary waves and dark solitons at a water–ice interface,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 289, 163–177 (2015) [Proc. Steklov Inst. Math. 289, 152–166 (2015)].

    MathSciNet  MATH  Google Scholar 

  10. A. T. Il’ichev, “Soliton-like structures on a water–ice interface,” Usp. Mat. Nauk 70(6), 85–138 (2015) [Russ. Math. Surv. 70, 1051–1103 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  11. A. T. Il’ichev, “Solitary wave packets beneath a compressed ice cover,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 3, 32–42 (2016) [Fluid Dyn. 51(3), 327–337 (2016)].

    MATH  Google Scholar 

  12. A. T. Il’ichev, A. P. Chugainova, and V. A. Shargatov, “Spectral stability of special discontinuities,” Dokl. Akad. Nauk 462(5), 512–516 (2015) [Dokl. Math. 91(3), 347–351 (2015)].

    MathSciNet  MATH  Google Scholar 

  13. A. T. Il’ichev and Y. B. Fu, “Stability of an inflated hyperelastic membrane tube with localized wall thinning,” Int. J. Eng. Sci. 80, 53–61 (2014).

    Article  MathSciNet  Google Scholar 

  14. A. G. Kulikovskii, “A possible effect of oscillations in the structure of a discontinuity on the set of admissible discontinuities,” Dokl. Akad. Nauk SSSR 275(6), 1349–1352 (1984) [Sov. Phys., Dokl. 29(4), 283–285 (1984)].

    MathSciNet  Google Scholar 

  15. A. G. Kulikovskii and A. P. Chugainova, “Simulation of the influence of small-scale dispersion processes in a continuum on the formation of large-scale phenomena,” Zh. Vychisl. Mat. Mat. Fiz. 44(6), 1119–1126 (2004) [Comput. Math. Math. Phys. 44, 1062–1068 (2004)].

    MATH  Google Scholar 

  16. A. G. Kulikovskii and A. P. Chugainova, “Classical and non-classical discontinuities in solutions of equations of non-linear elasticity theory,” Usp. Mat. Nauk 63(2), 85–152 (2008) [Russ. Math. Surv. 63, 283–350 (2008)].

    Article  MathSciNet  Google Scholar 

  17. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Chapman & Hall/CRC, Boca Raton, FL, 2001), Monogr. Surv. Pure Appl. Math.118.

    MATH  Google Scholar 

  18. R. L. Pego, P. Smereka, and M. I. Weinstein, “Oscillatory instability of traveling waves for a KdV–Burgers equation,” Physica D 67(1–3), 45–65 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  19. R. L. Pego and M. I. Weinstein, “Eigenvalues, and instabilities of solitary waves,” Philos. Trans. R. Soc. London A 340(1656), 47–94 (1992).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Il’ichev.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2016, Vol. 295, pp. 163–173.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’ichev, A.T., Chugainova, A.P. Spectral stability theory of heteroclinic solutions to the Korteweg-de Vries-Burgers equation with an arbitrary potential. Proc. Steklov Inst. Math. 295, 148–157 (2016). https://doi.org/10.1134/S0081543816080083

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543816080083

Navigation