Skip to main content
Log in

Rigorous results of phase transition theory in lattice boson models

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

Quantum systems of particles obeying Bose statistics and moving in d-dimensional lattices are studied. The original Bose–Hubbard Hamiltonian is considered, together with model systems related to this Hamiltonian: the Bose–Hubbard model with exchange interaction of infinite radius and the Bose–Hubbard model with infinite interaction potential. Rigorous results concerning the proof of the existence of Bose condensation and a phase transition to the Mott insulator state in these systems are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Ruelle, Statistical Mechanics: Rigorous Results (W.A. Benjamin, New York, 1969).

    MATH  Google Scholar 

  2. B. Simon, The P(ϕ)2 Euclidean (Quantum) Field Theory (Princeton Univ. Press, Princeton, NJ, 1974).

    Google Scholar 

  3. D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Cold bosonic atoms in optical lattices,” Phys. Rev. Lett. 81, 3108–3111 (1998).

    Article  Google Scholar 

  4. M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, “Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms,” Nature 415, 39–44 (2002).

    Article  Google Scholar 

  5. D. Jaksch and P. Zoller, “The cold atom Hubbard toolbox,” Ann. Phys. 315, 52–79 (2005).

    Article  MATH  Google Scholar 

  6. J. Hubbard, “Electron correlations in narrow energy bands,” Proc. R. Soc. London A 276, 238–257 (1963).

    Article  Google Scholar 

  7. T. Matsubara and H. Matsuda, “A lattice model of liquid helium. I,” Prog. Theor. Phys. 16, 569–582 (1956).

    Article  Google Scholar 

  8. H. A. Gersch and G. C. Knollman, “Quantum cell model for bosons,” Phys. Rev. 129, 959–967 (1963).

    Article  MATH  Google Scholar 

  9. M. P. A. Fisher, P. B.Weichman, G. Grinstein, and D. S. Fisher, “Boson localization and the superfluid–insulator transition,” Phys. Rev. B 40, 546–570 (1989).

    Article  Google Scholar 

  10. W. Zwerger, “Mott–Hubbard transition of cold atoms in optical lattices,” J. Optics B 5 (2), S9–S16 (2003).

    Article  Google Scholar 

  11. J.-B. Bru and T. C. Dorlas, “Exact solution of the infinite-range-hopping Bose–Hubbard model,” J. Stat. Phys. 113, 177–196 (2003).

    Article  MATH  Google Scholar 

  12. N. N. Bogolubov, Jr., A Method for Studying Model Hamiltonians: A Minimax Principle for Problems in Statistical Physics (Pergamon, Oxford, 1972).

    Google Scholar 

  13. J. Ginibre, “On the asymptotic exactness of the Bogoliubov approximation for many boson systems,” Commun. Math. Phys. 8, 26–51 (1968).

    Article  MATH  Google Scholar 

  14. F. J. Dyson, E. H. Lieb, and B. Simon, “Phase transitions in quantum spin systems with isotropic and nonisotropic interactions,” J. Stat. Phys. 18, 335–383 (1978).

    Article  Google Scholar 

  15. T. Kennedy, E. H. Lieb, and B. S. Shastry, “The XY model has long-range order for all spins and all dimensions greater than one,” Phys. Rev. Lett. 61, 2582–2584 (1988).

    Article  Google Scholar 

  16. R. Fernández, J. Fröhlich, and D. Ueltschi, “Mott transition in lattice boson models,” Commun. Math. Phys. 266, 777–795 (2006).

    Article  MATH  Google Scholar 

  17. M. Aizenman, E. H. Lieb, R. Seiringer, J. P. Solovej, and J. Yngvason, “Bose–Einstein quantum phase transition in an optical lattice model,” Phys. Rev. A 70, 023612 (2004).

    Article  Google Scholar 

  18. R. Kubo, “Statistical-mechanical theory of irreversible processes. I: General theory and simple applications to magnetic and conduction problems,” J. Phys. Soc. Japan 12, 570–586 (1957).

    Article  MathSciNet  Google Scholar 

  19. N. N. Bogoljubow, “Quasimittelwerte in Problemen der statistischen Mechanik. II,” Phys. Abh. Sowjetunion 6 (3), 229–284 (1962).

    Google Scholar 

  20. J. Naudts, A. Verbeure, and R. Weder, “Linear response theory and the KMS condition,” Commun. Math. Phys. 44, 87–99 (1975).

    Article  MATH  Google Scholar 

  21. G. Roepstorff, “Bounds for a Bose condensate in dimensions v ≥ 3,” J. Stat. Phys. 18, 191–206 (1978).

    Article  MATH  Google Scholar 

  22. R. Haag, N. M. Hugenholtz, and M. Winnink, “On the equilibrium states in quantum statistical mechanics,” Commun. Math. Phys. 5, 215–236 (1967).

    Article  Google Scholar 

  23. D. Kastler, J. C. T. Pool, and E. T. Poulsen, “Quasi-unitary algebras attached to temperature states in statistical mechanics: A comment on the work of Haag, Hugenholtz and Winnink,” Commun. Math. Phys. 12, 175–192 (1969).

    Article  Google Scholar 

  24. H. Falk and L. W. Bruch, “Susceptibility and fluctuation,” Phys. Rev. 180, 442–444 (1969).

    Article  Google Scholar 

  25. D. P. Sankovich, “Local Gaussian domination and Bose condensation in lattice boson model,” Phys. Lett. A 377, 2905–2908 (2013).

    Article  MATH  Google Scholar 

  26. D. P. Sankovich, “Gaussian dominance and phase transitions in systems with continuous symmetry,” Teor. Mat. Fiz. 79 (3), 460–472 (1989)

    Google Scholar 

  27. D. P. Sankovich, Theor. Math. Phys. 79, 656–665 (1989)].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Sankovich.

Additional information

Original Russian Text © D.P. Sankovich, 2015, published in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2015, Vol. 290, pp. 335–343.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sankovich, D.P. Rigorous results of phase transition theory in lattice boson models. Proc. Steklov Inst. Math. 290, 318–325 (2015). https://doi.org/10.1134/S0081543815060280

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543815060280

Keywords

Navigation