Skip to main content
Log in

The Bernstein-Szegö inequality for fractional derivatives of trigonometric polynomials

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

On the set F n of trigonometric polynomials of degree n ≥ 1 with complex coefficients, we consider the Szegö operator \(D_\theta ^\alpha \) defined by the relation \(D_\theta ^\alpha f_n (t) = \cos \theta D^\alpha f_n (t) - \sin \theta D^\alpha \tilde f_n (t)\) for α, θ ∈ ℝ, where α ≥ 0. Here, \(D^\alpha f_n \) and \(D^\alpha \tilde f_n \) are the Weyl fractional derivatives of (real) order α of the polynomial f n and of its conjugate \(\tilde f_n \). In particular, we prove that, if αn ln 2n, then, for any θ ∈ ℝ, the sharp inequality \(\left\| {\cos \theta D^\alpha f_n - \sin \theta D^\alpha f_n } \right\|_{L_p } \leqslant n^\alpha \left\| {f_n } \right\|_{L_p } \) holds on the set F n in the spaces L p for all p ≥ 0. For classical derivatives (of integer order α ≥ 1), this inequality was obtained by Szegö in the uniform norm (p = ∞) in 1928 and by Zygmund for 1 ≤ p < ∞ in 1931–1935. For fractional derivatives of (real) order α ≥ 1 and 1 ≤ p ≤ ∞, the inequality was proved by Kozko in 1998.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. N. Bernshtein, “On the best approximation of continuous functions by polynomials of a given degree,” in Collected Works, Vol. 1: Constructive Theory of Functions (Izd. Akad. Nauk SSSR, Moscow, 1952), pp. 11–104 [in Russian].

    Google Scholar 

  2. S. N. Bernstein, “Sur l’ordre de la meilleure approximation des fonctions continues par les polynômes de degré donné,” Mem. Cl. Sci. Acad. Roy. Belg. 4, 1–103 (1912).

    Google Scholar 

  3. S. N. Bernshtein, “The author’s comments,” in Collected Works, Vol. 1: Constructive Theory of Functions (Izd. Akad. Nauk SSSR, Moscow, 1952), pp. 526–562 [in Russian].

    Google Scholar 

  4. S. Bernstein, Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d’une variable réelle (Gauthier-Villars, Paris, 1926).

    MATH  Google Scholar 

  5. M. Riesz, “Formule d’interpolation pour la dérivée d’un polynome trigonométrique,” C. R. Acad. Sci. 158, 1152–1154 (1914).

    MATH  Google Scholar 

  6. M. Riesz, “Eine trigonometrische Interpolationsformel und einige Ungleichungen für Polynome,” Jahresber. Deutsch. Math. Ver. 23, 354–368 (1914).

    MATH  Google Scholar 

  7. G. Szegö, “Über einen Satz des Herrn Serge Bernstein,” Schr. Köningsb. Gelehrt. Ges. 5(4), 59–70 (1928).

    Google Scholar 

  8. A. Zygmund, Trigonometric Series (Cambridge Univ. Press, New York, 1959; Mir, Moscow, 1965), Vols. 1, 2.

    MATH  Google Scholar 

  9. P. I. Lizorkin, “Bounds for trigonometrical integrals and Bernstein’s inequality for fractional derivatives,” Izv. Akad. Nauk SSSR, Ser. Mat. 29(1), 109–126 (1965).

    MATH  MathSciNet  Google Scholar 

  10. T. Bang, “Une inégalité de Kolmogoroff et les fonctions presquepériodiques,” Danske Vid. Selsk. Math.-Fys. Medd. 19(4), 1–28 (1941).

    MathSciNet  Google Scholar 

  11. S. P. Geisberg, “Analogs of Bernstein’s inequalities for fractional derivatives,” in Issues of Applied Mathematics and Mathematical Modeling: Abstracts of the 25th Scientific Conference, Leningrad, Russia, 1967 (Leningr. Inzh.-Stroit. Inst, Leningrad, 1967), pp. 5–10.

    Google Scholar 

  12. S. G. Samko, A. A. Kilbas, and O. I. Marychev, Fractional Integrals and Derivatives: Theory and Applications (Nauka i Tekhnika, Minsk, 1987; Gordon and Breach, New York, 1993).

    MATH  Google Scholar 

  13. G. Wilmes, “On Riesz-type inequalities and K-functionals related to Riesz potentials in ℝN,” Numer. Funct. Anal. Optim. 1(1), 57–77 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  14. A. I. Kozko, “The exact constants in the Bernstein-Zygmund-Szegö inequalities with fractional derivatives and the Jackson-Nikolskii inequality for trigonometric polynomials,” East J. Approx. 4(3), 391–416 (1998).

    MATH  MathSciNet  Google Scholar 

  15. V. V. Arestov and P. Yu. Glazyrina, “Sharp integral inequalities for fractional derivatives of trigonometric polynomials,” J. Approx. Theory 164(11), 1501–1512 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  16. V. V. Arestov and P. Yu. Glazyrina, “Integral inequalities for algebraic and trigonometric polynomials,” Dokl. Math. 85(1), 104–108 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  17. V. V. Arestov, “On inequalities of S.N. Bernstein for algebraic and trigonometric polynomials,” Soviet Math. Dokl. 20(3), 600–603 (1979).

    MATH  Google Scholar 

  18. V. V. Arestov, “On integral inequalities for trigonometric polynomials and their derivatives,” Math. USSR Izv. 18(1), 1–17 (1982).

    Article  MathSciNet  Google Scholar 

  19. P. Yu. Glazyrina, “Necessary conditions for metrics in integral Bernstein-type inequalities,” J. Approx. Theory 162(6), 1204–1210 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  20. V. V. Arestov, “The Szegö inequality for derivatives of a conjugate trigonometric polynomial in L 0,” Math. Notes 56(6), 1216–1227 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  21. E. S. Belinsky and E. R. Liflyand, “Approximation properties in L p, 0 < p < 1,” Funct. Approx. Comment. Math. 22, 189–199 (1993).

    MathSciNet  Google Scholar 

  22. K. Runovski and H.-J. Schmeisser, “On some extensions of Bernstein’s inequality for trigonometric polynomials,” Funct. Approx. Comment. Math. 29, 125–142 (2001).

    MathSciNet  Google Scholar 

  23. A. O. Leont’eva, “The Bernstein inequality in L 0 for the zero-order derivative of trigonometric polynomials,” Trudy Inst. Mat. Mekh. UrO RAN 19(2), 216–223 (2013).

    Google Scholar 

  24. L. V. Taikov, “Conjugate trigonometric polynomials,” Math. Notes 48(4), 1044–1046 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  25. V. V. Arestov, “Integral inequalities for algebraic polynomials on the unit circle,” Math. Notes 48(4), 977–984 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  26. G. Pólya and G. Szegö, Problems and Theorems in Analysis (Springer, Berlin, 1972; Nauka, Moscow, 1978), Vols. 1, 2.

    Book  MATH  Google Scholar 

  27. M. Marden, Geometry of Polynomials (AMS, Providence, RI, 1966), Ser. Mathematical Surveys and Monographs, Vol. 3.

    MATH  Google Scholar 

  28. N. G. de Bruijn and T. A. Springer, “On the zeros of composition-polynomials,” Nederl. Akad. Wetensch. Proc. 50, 895–903 (1947).

    MATH  MathSciNet  Google Scholar 

  29. N. G. de Bruijn, “Inequalities concerning polynomials in the complex domain,” Nederl. Akad. Wetensch. Proc. 50, 1265–1272 (1947).

    MATH  MathSciNet  Google Scholar 

  30. G. Pólya, “Über die Nullstellen gewisser ganzer Funktionen,” Math. Zeitschrift. 2(3—4), 352–383 (1918).

    Article  MATH  Google Scholar 

  31. A. I. Markushevich, Theory of Analytic Functions (Nauka, Moscow, 1968), Vol. 2 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Arestov.

Additional information

Original Russian Text © V.V. Arestov, P.Yu.Glazyrina, 2014, published in Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2014, Vol. 20, No. 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arestov, V.V., Glazyrina, P.Y. The Bernstein-Szegö inequality for fractional derivatives of trigonometric polynomials. Proc. Steklov Inst. Math. 288 (Suppl 1), 13–28 (2015). https://doi.org/10.1134/S0081543815020030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543815020030

Keywords

Navigation