Skip to main content
Log in

Some Zygmund type inequalities for the sth derivative of polynomials

  • Published:
Analysis Mathematica Aims and scope Submit manuscript

Abstract

For a polynomial P(z) of degree n having no zeros in |z| < 1, it was recently proved in [9] that

$$\left| {{z^s}{P^{\left( s \right)}}\left( z \right) + \beta \frac{{n\left( {n - 1} \right)...\left( {n - s + 1} \right)}}{{{2^s}}}P\left( z \right)} \right| \leqslant \frac{{n\left( {n - 1} \right)...\left( {n - s + 1} \right)}}{2}\left( {\left| {1 + \frac{\beta }{{{2^s}}}} \right| + \left| {\frac{\beta }{{{2^s}}}} \right|} \right)\mathop {\max }\limits_{\left| z \right| = 1} \left| {P\left( z \right)} \right|$$

for every β ∈ C with |β| ≤ 1, 1 ≤ sn and |z| = 1. In this paper, we obtain the L p mean extension of the above and other related results for the sth derivative of polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Arestov, On integral inequalities for trigonometric polynimials and their derivatives, Izv. Akad. Nauk SSSR Ser. Mat., 45 (1981), 3–22 ([in Russian); English translation: Math. USSR-Izv., 18 (1982), 1–17.

    MathSciNet  Google Scholar 

  2. N. G. Bruijn, Inequalities concerning polynomials in the complex domain, Nederal. Akad. Wetensch. Proc., 50 (1947), 1265–1272.

    MathSciNet  MATH  Google Scholar 

  3. K. K. Dewan and N. K. Govil, An inequality for self-inversive polynomials, J. Math. Anal. Appl., 45 (1983), 490.

    Article  MathSciNet  MATH  Google Scholar 

  4. V. K. Jain, Generalization of certain well-known inequalities for polynomials, Glas. Mat. Ser. III, 32 (1997), pp. 45–52.

    MathSciNet  MATH  Google Scholar 

  5. P. D. Lax, Proof of a conjecture of P. Erdős on the derivative of a polynomial, Bull. Amer. Math. Soc., 50 (1944), 509–513.

    Article  MathSciNet  MATH  Google Scholar 

  6. Q. I. Rahman and G. Schmeisser, L p inequalities for polynomials, J. Approx. Theory, 53 (1988), 26–32.

    Article  MathSciNet  MATH  Google Scholar 

  7. Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press (New York, 2002).

    MATH  Google Scholar 

  8. A. C. Schaffer, Inequalities of A. Markov and S. Bernstein for polynomials and related functions, Bull. Amer. Math. Soc., 47 (1941), 565–579.

    Article  MathSciNet  Google Scholar 

  9. S. Hans and R. Lal, Generalization of some polynomial inequalities not vanishing in a disk, Anal. Math., 40 (2014), 105–115.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Gulzar, On estimates for the coefficients of a polynomial, C. R. Acad. Sci. Paris, Ser. I, 354 (2016) 357–363.

    Article  MathSciNet  Google Scholar 

  11. A. Zygmund, A remark on conjugate series, Proc. London Math. Soc., 34 (1932), 392.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gulzar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulzar, S. Some Zygmund type inequalities for the sth derivative of polynomials. Anal Math 42, 339–352 (2016). https://doi.org/10.1007/s10476-016-0403-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10476-016-0403-7

Key words and phrases

Mathematics Subject Classification

Navigation