Skip to main content
Log in

On the Navier-Stokes equations: Existence theorems and energy equalities

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

Currently available results on the solvability of the Navier-Stokes equations for incompressible non-Newtonian fluids are presented. The order of nonlinearity in the equations may be variable; the only requirement is that it must be a measurable function. Unsteady and steady equations are considered. A lot of attention is paid to the recovery of energy balance, whose violation is theoretically admissible, in particular, in the three-dimensional classical unsteady Navier-Stokes equation. When constructing a weak solution by a limit procedure, a measure arises as a limit of viscous energy densities. Generally speaking, the limit measure contains a nonnegative singular (with respect to the Lebesgue measure) component. It is this singular component that maintains energy balance. Sufficient conditions for the absence of a singular component are studied: in this case, the standard energy equality holds. In many respects, only the regular component of the limit measure is important: in the natural form it is equal to the product of the viscous stress tensor and the gradient of a solution; if this natural form is retained, then the problem is solvable. Conditions are found for the validity of the indicated fundamental representation of the absolutely continuous component of the limit measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Caffarelli, R. Kohn, and L. Nirenberg, “Partial Regularity of Suitable Weak Solutions of the Navier-Stokes Equations,” Commun. Pure Appl. Math. 35, 771–831 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  2. F. Lin, “A New Proof of the Caffarelli-Kohn-Nirenberg Theorem,” Commun. Pure Appl. Math. 51, 241–257 (1998).

    Article  MATH  Google Scholar 

  3. O. A. Ladyzhenskaya, “New Equations for the Description of Motion of Viscous Incompressible Fluids and Solvability in the Large of Boundary Value Problems for Them,” Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 102, 85–104 (1967) [Proc. Steklov Inst. Math. 102, 95–118 (1967)].

    MATH  Google Scholar 

  4. J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires (Gauthier-Villars, Paris, 1969; Mir, Moscow, 1972).

    MATH  Google Scholar 

  5. V. V. Zhikov, “New Approach to the Solvability of Generalized Navier-Stokes Equations,” Funkts. Anal. Prilozh. 43(3), 33–53 (2009) [Funct. Anal. Appl. 43, 190–207 (2009)].

    Article  MathSciNet  Google Scholar 

  6. S. E. Pastukhova, “Compensated Compactness Principle and Solvability of Generalized Navier-Stokes Equations,” Probl. Mat. Anal. 55, 107–134 (2011) [J. Math. Sci. 173 (6), 769–802 (2011)].

    MathSciNet  Google Scholar 

  7. L. Diening, M. Růžička, and J. Wolf, “Existence of Weak Solutions for Unsteady Motions of Generalized Newtonian Fluids,” Ann. Scuola Norm. Super. Pisa, Cl. Sci., Ser. 5, 9, 1–46 (2010).

    MATH  Google Scholar 

  8. L. Diening, J. Málek, and M. Steinhauer, “On Lipschitz Truncations of Sobolev Functions (with Variable Exponent) and Their Selected Applications,” ESAIM: Control Optim. Calc. Var. 14(2), 211–232 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory (Springer, Berlin, 2000), Lect. Notes Math. 1748.

    MATH  Google Scholar 

  10. L. Boccardo and T. Gallouët, “Non-linear Elliptic and Parabolic Equations Involving Measure Data,” J. Funct. Anal. 87, 149–169 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Struwe, “On Partial Regularity Results for the Navier-Stokes Equations,” Commun. Pure Appl. Math. 41, 437–458 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Frehse and M. Růžička, “Existence of Regular Solutions to the Steady Navier-Stokes Equations in Bounded Six-Dimensional Domains,” Ann. Scuola Norm. Super. Pisa, Cl. Sci., Ser. 4,23, 701–719 (1996).

    Google Scholar 

  13. V. V. Zhikov, “On the Technique for Passing to the Limit in Nonlinear Elliptic Equations,” Funkts. Anal. Prilozh. 43(2), 19–38 (2009) [Funct. Anal. Appl. 43, 96–112 (2009)].

    Article  MathSciNet  Google Scholar 

  14. V. V. Zhikov and S. E. Pastukhova, “On the Compensated Compactness Principle,” Dokl. Akad. Nauk 433(5), 590–595 (2010) [Dokl. Math. 82 (1), 590–595 (2010)].

    MathSciNet  Google Scholar 

  15. S. Pastukhova, “Zhikov’s Hydromechanical Lemma on Compensated Compactness: Its Extension and Application to Generalised Stationary Navier-Stokes Equations,” Complex Var. Elliptic Eqns. 56, 697–714 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  16. L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions (CRC, Boca Raton, 1992; Nauchnaya Kniga, Novosibirsk, 2002).

    MATH  Google Scholar 

  17. O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’tseva, Linear and Quasi-linear Equations of Parabolic Type (Nauka, Moscow, 1967; Am. Math. Soc., Providence, RI, 1968), Transl. Math. Monogr. 23.

    Google Scholar 

  18. E. DiBenedetto, Degenerate Parabolic Equations (Springer, New York, 1993).

    Book  MATH  Google Scholar 

  19. V. V. Zhikov and S. E. Pastukhova, “Lemmas on Compensated Compactness in Elliptic and Parabolic Equations,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 270, 110–137 (2010) [Proc. Steklov Inst. Math. 270, 104–131 (2010)].

    MathSciNet  Google Scholar 

  20. J. Wolf, “Existence of Weak Solutions to the Equations of Non-stationary Motion of Non-Newtonian Fluids with Shear Rate Dependent Viscosity,” J. Math. Fluid Mech. 9, 104–138 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  21. O. A. Ladyzhenskaya, Mathematical Problems of Dynamics of Viscous Incompressible Flow, 2nd ed. (Nauka, Moscow, 1970) [in Russian]; Engl. transl. of the first edition: The Mathematical Theory of Viscous Incompressible Flow (Gordon & Breach, New York, 1969).

    Google Scholar 

  22. G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. 1: Linearized Steady Problems (Springer, New York, 1994).

    Google Scholar 

  23. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order (Springer, New York, 2001).

    MATH  Google Scholar 

  24. M. Giaquinta, Introduction to Regularity Theory for Nonlinear Elliptic Systems (Birkhäuser, Basel, 1993), Lect. Math.

    MATH  Google Scholar 

  25. P. Billingsley, Convergence of Probability Measures (J. Wiley & Sons, New York, 1968; Nauka, Moscow, 1977).

    MATH  Google Scholar 

  26. M. E. Bogovskii, “Solution of the First Boundary Value Problem for the Equation of Continuity of an Incompressible Medium,” Dokl. Akad. Nauk SSSR 248(5), 1037–1040 (1979) [Sov. Math., Dokl. 20, 1094–1098 (1979)].

    MathSciNet  MATH  Google Scholar 

  27. L. Diening and M. Růžička, “Calderón-Zygmund Operators on Generalized Lebesgue Spaces L p(·) and Problems Related to Fluid Dynamics,” J. Reine Angew. Math. 563, 197–220 (2003).

    MathSciNet  MATH  Google Scholar 

  28. D. Cruz-Uribe, A. Fiorenza, J. M. Martell, and C. Pérez, “The Boundedness of Classical Operators on Variable L p Spaces,” Ann. Acad. Sci. Fenn. Math. 31(1), 239–264 (2006).

    MathSciNet  Google Scholar 

  29. P. Pedregal, Parametrized Measures and Variational Principles (Birkhäuser, Basel, 1997), Prog. Nonlinear Diff. Eqns. Appl. 30.

    Book  MATH  Google Scholar 

  30. V. V. Zhikov, “On Variational Problems and Nonlinear Elliptic Equations with Nonstandard Growth Conditions,” Probl. Mat. Anal. 54, 23–112 (2011) [J. Math. Sci. 173 (5), 463–570 (2011)].

    MathSciNet  Google Scholar 

  31. K. Zhang, “Biting Theorems for Jacobians and Their Applications,” Ann. Inst. H. Poincaré, Anal. Non Linéaire 7(4), 345–365 (1990).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Zhikov.

Additional information

Original Russian Text © V.V. Zhikov, S.E. Pastukhova, 2012, published in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2012, Vol. 278, pp. 75–95.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhikov, V.V., Pastukhova, S.E. On the Navier-Stokes equations: Existence theorems and energy equalities. Proc. Steklov Inst. Math. 278, 67–87 (2012). https://doi.org/10.1134/S0081543812060089

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543812060089

Keywords

Navigation