Skip to main content
Log in

On some properties of the Navier–Stokes system of equations

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We discuss the initial and boundary value problems for the system of dimensionless Navier–Stokes equations describing the dynamics of a viscous incompressible fluid using the method of characteristics and the geometric method developed by the authors. Some properties of the formulation of these problems are considered. We study the effect of the Reynolds number on the flow of a viscous fluid near the surface of a body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. G. Loitsyanskii, Mechanics of Liquids and Gases (Drofa, Moscow, 2003; Pergamon, Oxford, 1966).

    MATH  Google Scholar 

  2. V. V. Pukhnachev, “Symmetry in Navier–Stokes equations,” Uspekhi Mekh., No. 6, 3–76 (2006).

    Google Scholar 

  3. L. Brandolese, “Fine properties of self-similar solutions of the Navier–Stokes equation,” Arch. Ration. Mech. Anal. 192 (3), 375–401 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  4. G. P. Galdi, “On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications,” in Handbook of Mathematical Fluid Dynamics (North Holland, Amsterdam, 2002), Vol. 1, pp. 653–791.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. E. Schonbek, “Asymptotic behavior of solutions to three-dimensional Navier–Stokes equations,” Indiana Univ. Math. J. 41 (3), 809–823 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  6. T. Miyakawa, “On space-time decay properties of nonstationary incompressible Navier–Stokes flows in Rn,” Funkcial. Ekvac. 43 (3), 541–557 (2000).

    MathSciNet  MATH  Google Scholar 

  7. C. Fefferman, “Existence and smoothness of the Navier–Stokes equation,” in The Millennium Prize Problems, (Clay Math. Inst., Cambridge, MA, 2006), pp. 57–67.

    Google Scholar 

  8. O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow (Nauka, Moscow, 1970; Gordon and Breach, New York, 1968).

    MATH  Google Scholar 

  9. V. A. Galaktionov, “On a spectrum of blow-up patterns for a higher-order semilinear parabolic equations,” Proc. Royal Soc. A, Ser. Math. Phys. Eng. Sci. 457, 1623–1643 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Marsden and J. McCracken, The Hopf Bifurcation and Its Applications (Springer, New York, 1976), Ser. Applied Mathematical Sciences19.

    Book  MATH  Google Scholar 

  11. Yu. N. Kochetkov, “Turbulence on a rough surface and new fundamental equations of boundary layer,” Dvigatel’, No. 3, 38–41 (2015).

    Google Scholar 

  12. N. A. Slezkin, Dynamics of a Viscous Incompressible Fluid (GITTL, Moscow, 1955).

    Google Scholar 

  13. A. J. Chorin, Lectures on Turbulence Theory, (Publish or Perish, Boston, 1976).

    MATH  Google Scholar 

  14. A. N. Kolmogorov, “Energy dissipation in local isotropic turbulence,” Dokl. Akad. Nauk 32 (1), 19–21 (1941).

    Google Scholar 

  15. Y. Giga, “Weak and strong solutions of the Navier–Stokes initial value problem,” Publ. Res. Inst. Math. Sci. 19 (3), 887–910 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  16. G. P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations, Vol. 1: Linear Steady Problems, Vol. 2: Nonlinear Steady Problems (Springer, New York, 1994).

    MATH  Google Scholar 

  17. E. V. Ermolin, L. I. Rubina, and A. F. Sidorov, “On the problem of two pistons,” J. Appl. Math. Mech. 32 (5), 967–976 (1968).

    Article  Google Scholar 

  18. R. Courant, Partial Differential Equations (Mir, Moscow, 1964) [in Russian].

    MATH  Google Scholar 

  19. L. I. Rubina, “Propagation of weak discontinuities for quasi-linear systems,” J. Appl. Math. Mech. 36 (3), 409–417 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  20. L. I. Rubina and O. N. Ul’yanov, “On solving the potential equation,” Proc. Steklov Inst. Math. 261 (Suppl. 1), S183–S200 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  21. L. I. Rubina and O. N. Ul’yanov, “Solution of nonlinear partial differential equations by the geometric method,” Trudy Inst. Mat. Mekh. UrO RAN 18 (2), 209–225 (2012).

    MATH  Google Scholar 

  22. P. Bradshaw, Effects of Streamwise Curvature on Turbulent Flow (London, 1973), Ser. AGARDograph169.

    Google Scholar 

  23. M. Pathak, A. Dewan, and A. K. Dass, “Effect of streamline curvature on flow field of a turbulent plane jet in cross-flow,” Mech. Res. Comm. 34, 241–248 (2007).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Rubina.

Additional information

Original Russian Text © L.I. Rubina, O.N. Ul’yanov, 2016, published in Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2016, Vol. 22, No. 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubina, L.I., Ul’yanov, O.N. On some properties of the Navier–Stokes system of equations. Proc. Steklov Inst. Math. 297 (Suppl 1), 163–174 (2017). https://doi.org/10.1134/S0081543817050170

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543817050170

Keywords

Navigation