Skip to main content
Log in

Studies of Erosive Wear of the Blading in Axial Compressors of Gas Turbines (Review)

  • STEAM-TURBINE, GAS-TURBINE, AND COMBINED-CYCLE POWER PLANTS AND THEIR AUXILIARY EQUIPMENT
  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

During operation, all components of a gas-turbine unit (GTU), including the blading of the axial compressor, are affected by the flow in the GTU flowpath, which results in the development of defects and deterioration of the main performance characteristics (efficiency, effective power, etc.). One of the most serious defects is erosive wear since it can cause destruction of one blade or all the blades in the compressor. This can lead to preliminary removal of a GTU from operation. Therefore, the erosion resistance of compressor blades is one of the main parameters controlling the service life of a gas-turbine unit. That is why studies of the erosive wear of axial compressors during operation of GTUs are urgent. This paper provides a review of the available publications on the erosive wear of blades and vanes in an axial compressor of gas-turbine units. The major erosion mechanisms classified by the type of particulates acting on blade material are examined. The geometric parameters of the compressor blading are found whose change due to erosive wear can disturb the flow aerodynamics and deteriorate the performance of individual elements and the overall GTU. The main three lines of erosive wear studies may be listed as follows: prediction of erosive wear, assessment and prediction of erosion consequences, and development of protective measures to control erosion during operation of a gas-turbine unit. The most frequently examined and promising subjects of erosion studies are outlined as applicable to gas turbine and compressor machine building. The state-of-the-art of studies in this field is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. Burnes and R. Kurz, “Performance degradation effects in modern industrial gas turbines,” in Proc. Zurich Global Power and Propulsion Forum, Zurich, Switzerland, Jan. 10–12, 2018 (Global Power and Propulsion Society, 2018), paper id. GPPS-2018-0019.

  2. R. Kurz and K. Brun, “Degradation of gas turbine performance in natural gas service,” J. Nat. Gas Sci. Eng. 1 (3), 95–102 (2009). https://doi.org/10.1016/j.jngse.2009.03.007

    Article  Google Scholar 

  3. C. Meher-Homji, A. F. Bromley, and J. P. Stalder, “Gas turbine performance deterioration and compressor washing,” in Proc. 2nd Middle East Turbomachiery Symp., Doha, Qatar, Mar. 17–20 2013, pp. 1–43.

  4. K. M. Shpilev, Operation of Aircraft in a Mountainous–Desert Areas (Voen. Izd., Moscow, 1991) [in Russian].

    Google Scholar 

  5. I. S. Diakunchak, “Performance deterioration in industrial gas turbines,” J. Eng. Gas Turbines Power 114, 161–168 (1992). https://doi.org/10.1115/1.2906565

    Article  Google Scholar 

  6. G. P. Sallee, Performance Deterioration Based on Existing (Historical) Data JT9D Jet Engine Diagnostics Program, Contractor Report CR-135448 (NASA Lewis Research Center, 1978).

  7. S. M. Scala, M. Konrad, and R. B. Mason, “Predicting the performance of a gas turbine engine undergoing compressor blade erosion,” in Proc. 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, Huntsville, Ala., USA, July 20–23, 2003 (American Inst. of Aeronautics and Astronautics, Reston, Va., 2003), paper no. AIAA-2003-5259. https://doi.org/10.2514/6.2003-5259

  8. J. Excell, “War machining,” Engineer 12, 64–70 (2003).

    Google Scholar 

  9. I. A. Krivosheev, R. F. Kamaeva, and S. A. Strugovets, “Specific features of the movement of dust particles in the flow path and changes in the geometry of compressor blades during the operation of gas turbine plants,” Vestn. UGATU, No. 3 (43), 18–24 (2011).

    Google Scholar 

  10. R. R. Myagi, Development of a Dust Abrasiveness Determination Method in Relation to the Rotors of Centrifugal Compressor Machines, Candidate’s Dissertation in Engineering (Tallinn Politechnic Univ., Tallinn, 1982).

  11. A. Secareanu, D. Moroianu, A. Karlsson, and L. Fuchs, “Experimental and numerical study of ground vortex interaction in an air-intake,” in Proc. 43rd AIAA Aerospace Sciences Meeting and Exhibition, Reno, Nev., USA, Jan. 10–13, 2005 (American Inst. of Aeronautics and Astronautics, Reston, Va., 2005), paper no. AIAA-2005-1206. https://doi.org/10.2514/6.2005-1206

  12. D. E. Glenny and N. G. T. E. Pyestock, Ingestion of Debris into Intakes by Vortex Action (Ministry of Technology, Aeronautical Research Council, London, 1970).

    Google Scholar 

  13. L. A. Robert and F. B. Garrett, Ingestion of Foreign Objects into Turbine Engines by Vortices, NACA Technical Note No. 3330 (National Advisory Committee for Aeronautics, Washington, DC, 1955).

  14. A. Vogel, A. J. Durant, M. Cassiani, R. Clarkson, M. Slaby, S. Diplas, and A. Stohl, “Simulation of volcanic ash ingestion into a large aero engine: Particle–fan interactions,” J. Turbomach. 141, 011010 (2019). https://doi.org/10.1115/1.4041464

    Article  Google Scholar 

  15. A. J. Prata and A. Tupper, “Aviation hazards from volcanoes: The state of the science,” Nat. Hazards 51, 239–244 (2009).

    Article  Google Scholar 

  16. T. J. Casadevall, “Volcanic ash and aviation safety,” in Proc. 1st Int. Symp. on Volcanic Ash and Aviation Safety, Seattle, Wash., USA, July 8–12, 1991; U. S. Geol. Surv. Bull., No. 2047 (1994). https://doi.org/10.3133/b2047

  17. E. Syverud, O. Brekke, and L. E. Bakken, “Axial compressor deterioration caused by saltwater ingestion,” J. Turbomach. 129, 119–126 (2007). https://doi.org/10.1115/1.2219763

    Article  Google Scholar 

  18. R. Kurz and K. Brun, “Fouling mechanism in axial compressors,” J. Eng. Gas Turbines Power 134, 935–946 (2011). https://doi.org/10.1115/GT2011-45012

    Article  Google Scholar 

  19. T. Zaba, “Losses in gas turbines due to deposits on the blading,” Brown Boveri Rev. 67, 715–722 (1980).

    Google Scholar 

  20. A. Chiariotti, P. Venturi, D. Borello, S. Costagliola, and S. Gabriele, “Erosion prediction of gas turbine compressor blades subjected to water washing process,” in Proc. Asia Turbomachinery and Pump Symp. (ATPS-2018), Singapore, Mar. 12–15, 2018, pp. 1–10.

  21. F. J. Heymann, “Erosion by liquids,” Mach. Des. 10, 118–124 (1970).

    Google Scholar 

  22. G. M. De Pratti, “Aerodynamical performance decay due to fouling and erosion in axial compressor for GT aeroengines,” in Proc. 75th Natl. ATI Congr., Rome, Italy, Sept. 15–16, 2020; E3S Web Conf. 197, 11002 (2020). https://doi.org/10.1051/e3sconf/202019711002

  23. V. A. Grigor’ev and B. A. Ponomarev, Helicopter Gas Turbine Engines (Mashinostroenie, Moscow, 2007) [in Russian].

    Google Scholar 

  24. I. A. Krivosheev and R. F. Kamaeva, “Analysis of regularities of the effect of air dust content on the change in the geometry of the blades and the parameters of the stages of an axial compressor,” Mol. Uch., No. 3, 50–55 (2011).

  25. A. V. Gumerov and R. G. Akmaletdinov, “Modeling of erosive wear of a compressor blade,” Aviats. Raketno-Kosm. Tekh., No. 3 (27), 233–239 (2011).

  26. T. V. Khavlin, A. N. Mikhailov, and V. A. Mikhailov, “Analysis of the features of abrasive-erosive wear of the compressor blade airfoil elements of a helicopter gas turbine engine,” in Prospects of Development of the Means of Military Action, Theories and Practices of Modern Combat: Proc. Sci and Pract Conf., Donetsk, Feb. 18, 2021, pp. 248–253.

  27. D. A. Mikhailov, “The main features of operation of compressor blades of a gas turbine engine and the classification of their operational functions,” Prog. Tekhnol. Sist. Mashinostr., No. 4(50), 126–131 (2014).

  28. R. Z. Khamitov, A. A. Ryzhov, and V. S. D’yakonov, Development of a Testing and Industrial Example of a Compressed Air Generator of a Compressor Plant, VF VNIIST and NPO “Motor” Technical Report (Ufa, 1989).

  29. J.-P. Immarigeon, D. Chow, V. R. Parameswaran, P. Au, H. Saari, and A. K. Koul, “Erosion testing of coatings for aero engine compressor components,” Adv. Perform. Mater. 4, 371–388 (1997).

    Article  Google Scholar 

  30. W. Tabakoff, A. N. Lakshminarasimha, and M. Pasin, “Simulation of compressor performance deterioration due to erosion,” J. Turbomach. 112, 78–83 (1990). https://doi.org/10.1115/1.2927424

    Article  Google Scholar 

  31. M. G. Dunn, C. Padova, J. E. Moller, and R. M. Adams, “Performance deterioration of a turbofan and a turbojet engine upon exposure to a dust environment,” J. Eng. Gas Turbines Power 109, 336–343 (1987).

    Article  Google Scholar 

  32. Z. J. Przedpelski, “The T700-GE-700 engine experience in sand environment,” J. Am. Helicopter Soc. 29, 63–69 (1984). https://doi.org/10.4050/JAHS.29.63

    Article  Google Scholar 

  33. N. A. Cumpsty, Compressor Aerodynamics (Longman Scientific and Technical, Harlow, 2004).

    Google Scholar 

  34. B. S. Revzin, Axial Compressors of Gas Turbine Gas Pumping Units, 2nd ed. (Ural. Gos. Tekh. Univ., Yekaterinburg, 2000) [in Russian].

    Google Scholar 

  35. K. V. Kholshchevnikov, Theory and Calculation of Aircraft Blade Machines (Mashinostroenie, Moscow, 1970) [in Russian].

    Google Scholar 

  36. Yu. B. Galerkin, Turbochargers. Workflow, Calculation and Design of the Flow Path (KKhT, Moscow, 2010) [in Russian].

  37. A. P. Komarov, “Influence of the radial clearance in the blade rims on the characteristics of the compressor,” in Design and Adjustment of Aircraft Gas Turbine Engines: Interuniversity Collection (Kuibyshev. Aviats. Inst. Im. S. P. Koroleva, Kuybyshev, 1984), pp. 65–71 [in Russian].

  38. C. Balan and W. Tabakoff, “Axial flow compressor performance deterioration,” in Proc. 20th Joint Propulsion Conf., Cincinnati, Oh., USA, June 11–13, 1984 (American Inst. of Aeronautics and Astronautics, Reston, Va., 1984). https://doi.org/10.2514/6.1984-1208

  39. S. P. Izotov, V. V. Shashkin, and V. M. Kapralov, Aviation Gas Turbine Engines in Ground Plants (Mashinostroenie, Moscow, 1984) [in Russian].

    Google Scholar 

  40. F. M. White, Viscous Fluid Flow, 2nd ed. (McGraw-Hill, New York, 1991).

    Google Scholar 

  41. C. C. Koch and L. H. Smith, “Loss sources and magnitudes in axial flow compressors,” J. Eng. Gas Turbines Power 98, 411–424 (1976). https://doi.org/10.1115/1.3446202

    Article  Google Scholar 

  42. H. Schlichting, Boundary Layer Theory, 4th ed. (McGraw-Hill, New York, 1960).

    MATH  Google Scholar 

  43. N. Aldi, M. Morini, M. Pinelli, P. R. Spina, A. Suman, and M. Venturini, “Numerical analysis of the effects of surface roughness localization on the performance of an axial compressor stage,” Energy Procedia 45, 1057–1066 (2014). https://doi.org/10.1016/j.egypro.2014.01.111

    Article  Google Scholar 

  44. K. Walton, L. Blunt, L. Fleming, M. Goodhand, and H. Lung, “A real parametric characterisation of ex-service compressor blade leading edges,” Wear 321, 79–86 (2014). https://doi.org/10.1016/j.wear.2014.10.007

    Article  Google Scholar 

  45. M. N. Goodhand and R. J. Miller, “Compressor leading edge spikes: A new performance criterion,” J. Turbomach. 133, 021006 (2011). https://doi.org/10.1115/1.4000567

    Article  Google Scholar 

  46. H. Hertz, “On the vibration elastic bodies,” J. Reine Angew. Math. 92, 156–171 (1882).

    Article  MathSciNet  MATH  Google Scholar 

  47. H. Lamb, “I. On the propagation of tremors over the surface of an elastic solid,” Philos. Trans. R. Soc., A 203, 1–42 (1904). https://doi.org/10.1098/rsta.1904.0013

  48. I. Finnie, “The mechanism of erosion of ductile metals,” in Proc. 3rd US Natl. Congr. on Applied Mechanics, Providence, R.I., June 11–14, 1958 (American Society of Mechanical Engineers, New York, 1958), pp. 527–532.

  49. J. G. A. Bitter, “A study of erosion phenomena: Part I,” Wear 6, 5–21 (1963). J. G. A. Bitter, “A study of erosion phenomena: Part II,” Wear 6, 169–190 (1963). https://doi.org/10.1016/0043-1648(63)90073-510.1016/0043-1648(63)90073-5https://doi.org/10.1016/0043-1648(63)90003-6

  50. J. H. Neilson and A. Gilchrist, “Erosion by a stream of solid particles,” Wear 11, 111–122 (1968). https://doi.org/10.1016/0043-1648(68)90591-7

    Article  Google Scholar 

  51. G. L. Sheldon and A. Kanhere, “An investigation of impingement erosion using single particles,” Wear 21, 195–209 (1972). https://doi.org/10.1016/0043-1648(72)90257-8

    Article  Google Scholar 

  52. G. P. Tilly, “A two-stage mechanism of ductile erosion,” Wear 23, 87–96 (1972). https://doi.org/10.1016/0043-1648(73)90044-6

    Article  Google Scholar 

  53. W. H. Jennings, W. J. Head, and C. R. Manning, Jr., “A mechanistic model for the prediction of ductile erosion,” Wear 40, 93–112 (1976). https://doi.org/10.1016/0043-1648(76)90021-1

    Article  Google Scholar 

  54. H. C. Meng and K. C. Ludema, “Wear model and prediction equations: Their form and content,” Wear 181–183, 443–457 (1995). https://doi.org/10.1016/0043-1648(95)90158-2

    Article  Google Scholar 

  55. T. Deng, M. S. Bingley, and M. S. A. Bradley, “The influence of particle rotation on the solid particle erosion rate of metals,” Wear 256, 1037–1049 (2004). https://doi.org/10.1016/S0043-1648(03)00536-2

    Article  Google Scholar 

  56. B. S. Chahar, S. Siddhartha, and A. K. Pun, “Erosion wear of ductile materials: A review,” ELK Asia Pac. J. - Spec. Issue (2018).

    Google Scholar 

  57. W. B. Clevenger and W. Tabakoff, “Dust particle trajectories in aircraft radial turbines,” J. Aircr. 13, 786–791 (1976). https://doi.org/10.2514/3.58711

    Article  Google Scholar 

  58. G. Grant and W. Tabakoff, “Erosion prediction in turbomachinery resulting from environmental solid particles,” J. Aircr. 12, 471–478 (1975). https://doi.org/10.2514/3.59826

    Article  Google Scholar 

  59. G. Grant and W. Tabakoff, “Erosion prediction in turbomachinery due to environmental solid particles,” in Proc. 12th Aerospace Sci. Meeting, Washington, DC, Jan. 30 – Feb. 1, 1974 (American Inst. of Aeronautics and Astronautics, Washington, DC, 1974). https://doi.org/10.2514/6.1974-16

  60. M. F. Hussein and W. Tabakoff, Calculation of Particle Trajectories in a Stationary Two Dimensional Cascade, Project Themis Report No. 72-27 (Univ. of Cincinnati, Cincinnati, Oh., 1972).

  61. W. Tabakoff, “Compressor erosion and performance deterioration,” J. Fluids Eng. 109, 297–306 (1987). https://doi.org/10.1115/1.3242664

    Article  Google Scholar 

  62. A. Ghenaiet, S. C. Tan, and R. L. Elder, “Prediction of an axial turbomachine performance degradation due to sand ingestion,” Proc. Inst. Mech. Eng., Part A 219, 273–287 (2005). https://doi.org/10.1243/095765005X7592

    Article  Google Scholar 

  63. A. Ghenaiet, S. C. Tan, and R. L. Elder, “Study of erosion effects on an axial fan global range of operation,” in Proc. ASME Turbo Expo 2004: Power for Land, Sea and Air, Vienna, Austria, June 14–17, 2004 (American Society of Mechanical Engineers, New York, 2004), Vol. 2, pp. 283–293. https://doi.org/10.1115/GT2004-54169

  64. A. Ghenaiet, S. C. Tan, and R. L. Elder, “Particles trajectories through an axial fan and performance degradation due to sand ingestion,” in Proc. ASME Turbo Expo 2001: Power for Land, Sea, and Air, New Orleans, La., USA, June 4–7, 2001 (American Society of Mechanical Engineers, New York, 2001), Vol. 1, paper id. 2001-GT-0497. https://doi.org/10.1115/2001-GT-0497

  65. M. Junkar, B. Jurisevic, M. Fajdiga, and M. Grah, “Finite element analysis of single-particle impact in abrasive water jet machining,” Int. J. Impact Eng. 32, 1095–1112 (2006). https://doi.org/10.1016/j.ijimpeng.2004.09.006

    Article  Google Scholar 

  66. S. Y. Ahmadi-Brooghani, H. Hassanzadeh, and P. Kahhal, “Modeling of single-particle impact in abrasive water jet machining,” Int. J. Mech., Aerosp., Ind., Mechatron., Manuf. Eng. 1, 723–728 (2007).

    Google Scholar 

  67. J. Alqallaf, A. Naser, J. A. Teixeira, and A. Addali, “Solid particle erosion behaviour and protective coatings for gas turbine compressor blades: A review,” Processes 8, 984–1025 (2020). https://doi.org/10.3390/pr8080984

    Article  Google Scholar 

  68. M. B. Abdel’vakhid, A. N. Cherkasov, R. M. Fedorov, and K. S. Fedechkin, “Computational study of the influence of erosive wear on the altitude-speed characteristics of turbofan engines,” Vestn. UGATU, No. 3 (64), 16–22 (2014).

    Google Scholar 

  69. B. M. Galitseiskii and V. Yu. Shustrova, “Two-phase turbulent jet flows with phase transformations,” Mat. Model. 17 (7), 79–93 (2005).

    MathSciNet  MATH  Google Scholar 

  70. A. Farokhipour, Z. Mansoori, M. Saffar-Avval, and G. Ahmadi, “Numerical modelling of sand particle erosion at return bends in gas-particle twophase flow,” Sci. Iran., Trans. B 25, 3231–3242 (2018). https://doi.org/10.24200/SCI.2018.50801.1871

    Article  Google Scholar 

  71. A. Mansouri, A Combined CFD-Experimental Method for Developing an Erosion Equation for Both Gas-Sand and Liquid-Sand Flows, PhD Thesis (Department of Mechanical Engineering, Univ. of Tulsa, Tulsa, Okla., 2016).

  72. D. Anielli, D. Borello, F. Rispoli, A. Salvagni, and P. Venturini, “Prediction of particle erosion in the internal cooling channels of a turbine blade,” in Proc. 11th Eur. Conf. on Turbomachinery Fluid Dynamics and Thermodynamics, Madrid, Spain, Mar. 23–27, 2015, paper no. ETC2015-184.

  73. S. Peng, Q. Chen, C. Shan, and D. Wang, “Numerical analysis of particle erosion in the rectifying plate system during shale gas extraction,” Energy Sci. Eng. 7, 1838–1851 (2019). https://doi.org/10.1002/ese3.395

    Article  Google Scholar 

  74. H. Arabnejad, Development of Erosion Equations for Solid Particle and Liquid Droplet Impact, PhD Thesis (Department of Mechanical Engineering, Univ. of Tulsa, Tulsa, Okla., 2015).

  75. K. Sun, L. Lu, and H. Jin, “Modeling and numerical analysis of the solid particle erosion in curved ducts,” Abstr. Appl. Anal. 4, 245074 (2013). https://doi.org/10.1155/2013/245074

    Article  MATH  Google Scholar 

  76. M. Grazia de Giorgi, S. Campilongo, A. Ficarella, M. Coltelli, V. Pfister, and F. Sepe, “Experimental and numerical study of particle ingestion in aircraft engine,” in Proc. ASME Turbo Expo: Turbine Tech. Conf. and Exposition, San Antonio, Tex., USA, June 3–7, 2013 (American Society of Mechanical Engineers, New York, 2013). https://doi.org/10.1115/GT2013-95662

  77. A. Hamed, R. Rivir, P. Arora, and K. Das, “Turbine blade surface deterioration by erosion,” J. Turbomach. 127, 445–452 (2004). https://doi.org/10.1115/1.1860376

    Article  Google Scholar 

  78. E. Poursaeidi, H. Tafrishi, and H. Amani, “Experimental-numerical investigation for predicting erosion in the first stage of an axial compressor,” Powder Technol. 306, 80–87 (2017). https://doi.org/10.1016/j.powtec.2016.10.057

    Article  Google Scholar 

  79. D. Borello, L. Cardillo, A. Corsini, G. Delibra, F. Rispoli, A. Salvagni, and P. Venturini, “Modelling of particle transport, erosion and deposition in power plant gas paths,” in Proc. ASME Turbo Expo: Power for Land, Sea and Air, Seoul, South Korea, Sept. 20, 2016 (American Society of Mechanical Engineers, New York, 2016), paper id. GT2016-57984. https://doi.org/10.1115/GT2016-57984

  80. H. Yang and J. G. Boulanger, “The whole annulus computations of particulate flow and erosion in an axial fan,” J. Turbomach. 135, 11040 (2013). https://doi.org/10.1115/1.4006564

    Article  Google Scholar 

  81. A. Corsini, A. Marchegiani, F. Rispoli, and P. Venturini, “Predicting blade leading edge erosion in an axial induced draft fan,” J. Eng. Gas Turbines Power 134, 042601 (2012). https://doi.org/10.1115/1.4004724

    Article  Google Scholar 

  82. M. Suzuki and M. Yamamoto, “Numerical simulation of sand erosion in a transonic compressor rotor,” in Proc. ASME Turbo Expo 2010, Glasgow, Scotland, June 14–18, 2010 (American Society of Mechanical Engineers, New York, 2010), Vol. 7, pp. 1011–1018. https://doi.org/10.1115/GT2010-23593

  83. M. Suzuki, K. Inaba, and M. Yamamoto, “Numerical simulation of sand erosion phenomena in rotor/stator interaction of compressor,” J. Therm. Sci. 17, 125–133 (2006). https://doi.org/10.1007/s11630-008-0125-7

    Article  Google Scholar 

  84. E. A. Strokach, G. D. Kozhevnikov, and A. A. Pozhidaev, “Numerical simulation of solid particle erosion in a gaseous flow (review),” Vestn. PNIPU, Aerokosm. Tekh., No. 67, 56–69 (2021). https://doi.org/10.15593/2224-9982/2021.67.06

  85. X. Chen, B. S. McLaury, and S. A. Shirazi, “Application and experimental validation of a computational fluid dynamics (CFD)-based erosion prediction model in elbows and plugged tees,” Comp. Fluids 33, 1251–1272 (2004). https://doi.org/10.1016/j.compfluid.2004.02.003

    Article  Google Scholar 

  86. H. Hadziahmetovic, N. Hodzic, D. Kahrimanovic, and E. Dzaferovic, “Computational fluid dynamics (CFD) based erosion prediction model in elbows,” Teh. Vjesn. – Tech. Gaz. 21, 275–282 (2014).

    Google Scholar 

  87. A. Mansouri, H. Arabnejad, S. Karimi, S. A. Shirazi, and B. S. McLaury, “Improved CFD modeling and validation of erosion damage due to fine sand particles,” Wear 338–339, 339–350 (2015). https://doi.org/10.1016/j.wear.2015.07.011

    Article  Google Scholar 

  88. D. A. Pandya, Development of Computational Fluid Dynamics (CFD) Based Erosion Models for Oil and Gas Industry Applications, PhD Thesis (Univ. of Texas, Arlington, Tex., 2013).

  89. H. Sommerfeld, C. Koch, A. Schwarz, and A. Beck, “High velocity measurements of particle rebound characteristics under erosive conditions of high-pressure compressors,” Wear 470–471, 203626 (2021). https://doi.org/10.1016/j.wear.2021.203626

    Article  Google Scholar 

  90. E. Poursaeidi, A. M. Niaei, M. Arablu, and A. Salarvand, “Experimental investigation on erosion performance and wear factors of custom 450 steel as the first-row blade material of an axial compressor,” Int. J. Surf. Sci. Eng. 11, 85–99 (2017). https://doi.org/10.1504/IJSURFSE.2017.084663

    Article  Google Scholar 

  91. C. J. Reagle, Technique for Measuring the Coefficient of Restitution for Microparticle sand Impacts at High Temperature for Turbomachinery Applications, PhD Thesis (Virginia Polytechnic Inst. and State Univ., Blacksburg, Va., 2012).

  92. W. Tabakoff, “Investigation of coatings at high temperature for use in turbomachinery,” Surf. Coat. Technol. 39–40, 97–115 (1989). https://doi.org/10.1016/0257-8972(89)90045-5

    Article  Google Scholar 

  93. W. Tabakoff, R. H. Kotwal, and A. Hamed, “Erosion study of different materials affected by coal ash particles,” Wear 52, 161–173 (1979). https://doi.org/10.1016/0043-1648(79)90206-0

    Article  Google Scholar 

  94. G. Grant, W. Tabakoff, and R. Ball, An Experimental Study of Certain Aerodynamic Effects on Erosion (Univ. of Cincinnati, Cincinnati, Oh., 1972). https://doi.org/10.2514/6.1974-639

  95. A. Ghenaiet, S. C. Tan, and R. L. Eder, “Experimental investigation of axial fan erosion and performance degradation,” Proc. Inst. Mech. Eng., Part A 218, 437–450 (2004). https://doi.org/10.1243/0957650041761900

    Article  Google Scholar 

  96. D. V. Pavlenko and Ya. V. Dvirnik, “Patterns of wear of the rotor blades of the compressor of helicopter engines operating in a dusty atmosphere,” Vestn. Dvigatelestr., No. 1, 42–51 (2016).

  97. J. P. Van der Walt and N. Alan, “Erosion of dust-filtered helicopter turbine engines. Part I: Basic theoretical considerations,” J. Aircr. 32, 106–111 (1995). https://doi.org/10.2514/3.56919

    Article  Google Scholar 

  98. A. Hamed and W. Tabakoff, “Aerodynamic effects on erosion in turbomachinery,” in Proc. Joint Gas Turbine Congr., Tokyo, Japan, May 22–27, 1977 (Gas Turbine Society of Japan, Tokyo, 1977), Vol. 70.

  99. K. Ratkovska and M. Hocko, “Dust impact on the geometrical characteristics of an axial compressor,” AIP Conf. Proc. 1889, 020031 (2017). https://doi.org/10.1063/1.5004365

    Article  Google Scholar 

  100. P. F. Batcho, J. C. Moller, C. Padova, and M. G. Dunn, “Interpretation of gas turbine response due to dust ingestion,” J. Eng. Gas Turbines Power 109, 344–352 (1987). https://doi.org/10.1115/1.3240046

    Article  Google Scholar 

  101. A. S. Vinogradov, The Design of RD-33 Turbofan Engine: Textbook (Minist. Obrazov. Nauki RF / Samar. Gos. Aerokosm. Univ. im. S. P. Koroleva, Samara, 2013) [in Russian].

  102. Ya. V. Dvirnik and D. V. Pavlenko, “Influence of blades dust erosion on the axial compressor gasdynamic characteristics of gas turbine engine,” Vestn. Dvigatelestr., No. 1, 56–66 (2017).

  103. M. Suzuki and M. Yamamoto, “Numerical simulation of sand erosion phenomena in single stage axial compressor,” Trans. Jpn. Soc. Mech. Eng., Part B 76, 795–803 (2010).

    Google Scholar 

  104. V. A. Kostyshev, Yu. I. Klimnyuk, N. S. Regov, S. A. Kosyrev, and L. A. Anipchenko, “Bench test of the flow part of the compressor of the ‘NK-16ST’ gas turbine power drive for erosive wear,” in Proc. Int. Sci. and Tech. Conf. on Problems and Prospects for the Development of Engine Building, 2003 (Samar. Gos. Aerokosm. Inst., Samara, 2003), Vol. 1, pp. 44–49.

  105. S. A. Strugovets, I. A. Krivosheev, R. I. Galiulin, R. F. Kamaeva, and K. E. Rozhkov, “Development of a method for parametric diagnostics of the technical condition of a gas turbine engine based on the analysis of blade erosion and regularities in the flow of compressor characteristics,” Vestn. UGATU 14 (4), 3–10 (2010).

    Google Scholar 

  106. G. G. Enikeev, “Complex protection of a gas turbine engine operating in a dusty atmosphere and marine environment,” Vestn. UGATU 17 (3), 41–48 (2013).

    Google Scholar 

  107. F. C. Da Silva, M. Grinet, and A. R. Silva, “A machine learning approach to forecasting turbofan engine health using real flight data,” in Proc. AIAA SCITECH 2022 Forum, San Diego, Calif., USA, Jan. 3–7, 2022 (American Inst. of Aeronautics and Astronautics, Reston, Va., 2022), paper id. AIAA 2022-0491. https://doi.org/10.2514/6.2022-0491

  108. M. Tahan, M. Muhammad, and Z. A. Abdul Karim, “A multi-nets ANN model for real-time performance-based automatic fault diagnosis of industrial gas turbine engines,” J. Braz. Soc. Mech. Sci. Eng. 39, 2865–2876 (2017). https://doi.org/10.1007/s40430-017-0742-8

    Article  Google Scholar 

  109. J. V. Taylor, B. Conduit, A. Dickens, C. Hall, M. Hillel, and R. J. Miller, “Predicting the operability of damaged compressors using machine learning,” in Proc. ASME Turbo Expo 2019: Turbomachinery Tech. Conf. and Exposition, Phoenix, Ariz., USA, June 17–21, 2019 (American Society of Mechanical Engineers, New York, 2019), Vol. 2A: Turbomachinery, paper id. GT2019-91339. https://doi.org/10.1115/GT2019-91339

  110. P. Voigt, M. Voigt, R. Mailach, D. Münzinger, K. Abu-Taa, and A. Lange, “A novel methodology for detecting foreign object damage on compressor blading,” in Proc. ASME Turbo Expo 2019: Turbomachinery Tech. Conf. and Exposition, Phoenix, Ariz., USA, June 17–21, 2019 (American Society of Mechanical Engineers, New York, 2019), Vol. 2D: Turbomachinery, paper id. V02DT46A005.

  111. V. L. Blinov, I. S. Zubkov, O. V. Belyaev, E. Yu. Iskortsev, and P. I. Plishkin, “Special aspects of numerical simulation of a two-stage axial-flow compressor with defective blades,” Vestn. Samar. Univ., Aerokosm. Tekh., Tekhnol. Mashinostr. 20 (4), 7–19 (2021). https://doi.org/10.18287/2541-7533-2021-20-4-7-19

    Article  Google Scholar 

  112. K. Brun, R. Kurz, J. Thorp, and B. Winkelmann, “Gas turbine packaging options and features,” in Proc. 45th Turbomachinery and 32nd Pump Symp., Houston, Tex., USA, Sept. 12–15, 2016 (Turbomachinery Laboratory, Texas A&M Engineering Experiment Station, College Station, Tex., 2016).

  113. C. B. Meher-Homji and G. A. Gabriles, “Gas turbine blade failure-causes, avoidance and troubleshooting,” in Proc. 27th Turbomachinery Symp. and 27th International Pump Users Symp., Houston, Tex., Sept. 22–24, 1998 (Turbomachinery Laboratory, College Station, Tex., 1998).

  114. M. A. Wilcox and R. Kurz, “Successful selection an operation of gas turbine inlet filtration systems,” in Proc. 40th Turbomachinery Symp., Houston, Tex., 2011 (Turbomachinery Laboratory, Texas A&M Univ., College Station, Tex., 2011).

  115. M. A. Wilcox and N. W. Poerner, “Gas turbine filter efficiency test procedure: liquid and solid particles,” in Proc. Gas Machinery Research Council Conf., Dallas, Tex., 2011.

  116. D. Orhon, R. Kurz, S. D. Hiner, and J. Benson, “Gas turbine air filtration systems for offshore applications,” in Proc. 44th Turbomachinery and 31st Pump Symp., Houston, Tex., Sept. 14–17, 2015 (Turbomachinery Laboratory at Texas A&M Engineering Experiment Station, College Station, Tex., 2015).

  117. P. T. McGuigan, “Salt in the marine environment and the creation of a standard input for gas turbine air intake filtration systems,” in Proc. ASME Turbo Expo: Power for Land, Sea, and Air, Vienna, Austria, June 14–17, 2004 (American Society of Mechanical Engineers, New York, 2004), pp. 767–775, paper id. GT2004-53113. https://doi.org/10.1115/GT2004-53113

  118. N. K. Galantsev, “Development of integrated air cleaning units (ACUs) for marine applications based on air filters and AAF International technologies,” in Proc. 11th Int. Conf. and Exposition on Development of Oil and Gas of Russian Arctic and the Continental Shelf of CIS Countries (RAO / CIS Offshore 2013), St. Petersburg, Russia, 2013, pp. 172–175.

  119. A. S. Gishvarov, R. R. Aitov, and A. M. Aitumbetov, “Study of the effectiveness of dust protection devices for helicopter gas turbine engines,” Vestn. UGATU 19 (2), 100–110 (2015).

    Google Scholar 

  120. V. A. Danilov, Helicopter Mi-8 (Assembly and Maintenance) (Transport, Moscow, 1988) [in Russian].

    Google Scholar 

  121. N. E. Ginzburg and E. I. Nikitin, “Study of dusty air near Mi-1 and Mi-4 helicopters in operational conditions,” in Helicopter Gas Turbine Engines: Compilation of Papers (Mashinostroenie, Moscow, 1966), pp. 145–165 [in Russian].

    Google Scholar 

  122. V. S. Efanov, A. N. Prokopenko, A. V. Ovchinnikov, and Yu. N. Vnukov, “Erosion resistance of helicopter GTE compressor blades protected by various types of coatings,” Vestn. Dvigatelestr., No. 1, 120–123 (2017).

  123. S. A. Muboyadzhyan, D. A. Aleksandrov, D. S. Gorlov, L. P. Egorova, and E. E. Bulavintseva, “Protective and hardening ion-plasma coatings for blades and other critical parts of the gas turbine engine compressor,” Aviats. Mater. Tekhnol., No. 6, 72–81 (2012).

  124. S. A. Muboyadzhyan, D. A. Aleksandrov, and D. S. Gorlov, “Nanolayer hardening coatings for the protection of steel and titanium blades of a gas turbine engine compressor,” Aviats. Mater. Tekhnol., No. 3 (20), 3–8 (2011).

  125. E. N. Kablov, S. A. Muboyadzhyan, S. A. Budinovskii, and Ya. A. Pomelov, “Ion-plasma protective coatings for gas turbine engine blades,” Konvers. Mashinostr., No. 2, 42–47 (1999).

  126. N. V. Belan, V. V. Omel’chenko, and A. N. Prokopenko, “Increasing the erosion resistance of working blades of a gas turbine engine compressor,” Aviats. Prom-st., No. 10, 19–20 (1986).

  127. R. Rajendran, “Gas turbine coatings: An overview,” Eng. Failure Anal. 26, 355–369 (2012). https://doi.org/10.1016/j.engfailanal.2012.07.007

    Article  Google Scholar 

  128. E. N. Kablov and S. A. Muboyadzhyan, “Erosion-resistant coatings for gas turbine engine compressor blades,” Russ. Metall. (Engl. Transl.) 2017, 494–504 (2017). https://doi.org/10.1134/S0036029517060118

  129. L. Swadzba, B. Formanek, H. Gabriel, P. Liberski, and P. Podolski, “Erosion- and corrosion-resistant coatings for aircraft compressor blades,” Surf. Coat. Technol. 62, 486–492 (1993). https://doi.org/10.1016/0257-8972(93)90288-y

    Article  Google Scholar 

  130. V. Bonu, M. Jeevitha, V. P. Kumar, G. Srinivas, and H. C. Barshilia, “Solid particle erosion and corrosion resistance performance of nanolayered multilayered Ti/TiN and TiAl/TiAlN coatings deposited on Ti6Al4V substrates,” Surf. Coat. Technol. 387, 125531 (2020). https://doi.org/10.1016/j.surfcoat.2020.125531

    Article  Google Scholar 

  131. S. A. Budinovskii, D. A. Chubarov, and P. V. Matveev, “State of the art methods for applying thermal coatings on gas turbine engine blades (review),” Aviats. Mater. Tekhnol., No. S5, 38–44 (2014). https://doi.org/10.18577/2071-9140-2014-0-s5-38-44

  132. J. M. Drexler, K. Shinoda, A. L. Ortiz, D. Li, A. L. Vasiliev, A. D. Gledhill, S. Sampath, and N. Padture, “Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits,” Acta Mater. 58, 6835–6844 (2010). https://doi.org/10.1016/j.actamat.2010.09.013

    Article  Google Scholar 

  133. D. S. de Almeida, C. R. M. da Silva, M. do Carmo A. Nono, and C. A. A. Cairo, “NiAl alloy coating deposition by electron beam physical vapour deposition,” in Proc. 17th Brazilian Congr. of Engineering and Materials Science, Paraná, Brazil, Nov. 15–19, 2006, pp. 15–19.

  134. T. N. Rhys-Jones, “The use of thermally sprayed coatings for compressor and turbine applications in aero engines,” Surf. Coat. Technol. 42, 1–11 (1990). https://doi.org/10.1016/0257-8972(90)90109-P

    Article  Google Scholar 

Download references

Funding

The study was funded by the Russian Science Foundation (grant no. 22-79-00169).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Blinov.

Additional information

Translated by T. Krasnoshchekova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blinov, V.L., Zubkov, I.S., Bogdanets, S.V. et al. Studies of Erosive Wear of the Blading in Axial Compressors of Gas Turbines (Review). Therm. Eng. 70, 430–442 (2023). https://doi.org/10.1134/S0040601523060022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601523060022

Keywords:

Navigation