Skip to main content
Log in

Experience Gained with CFD-Modeling of Liquid and Gaseous Fuel Combustion Processes in Power Installations (Review)

  • STEAM BOILERS, POWER PLANT FUEL, BURNERS, AND BOILER AUXILIARY EQUIPMENT
  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

Nowadays, dedicated computer programs developed on the basis of finite element analysis and using modern mathematical models of physicochemical processes are widely applied in designing new or optimizing existing devices and installations firing organic fuels. Such multiparametric tasks, which encompass a wide range of physical problems, are predominantly solved by means of CFD modeling based on the finite volume method. This numerical method for integrating systems of differential equations with partial derivatives features versatility and numerical stability. Particular problems that are dealt with by applying computer programs that use CFD modeling are solved in a few sequential stages: preparing the problem for solving, verifying the mathematical model, visualizing the calculated results and preprocessing them, and analyzing the obtained results. The article discusses the experience gained with modeling and suggests the main recommendations on using this software product in engineering practice for solving particular problems concerned with ignition and burnout of gaseous and liquid fuel and emission of harmful combustion products in power installations for developing new or optimizing existing designs of various furnace and burner devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

Similar content being viewed by others

REFERENCES

  1. E. P. Volkov, V. B. Prokhorov, A. M. Arkhipov, S. L. Chernov, and V. S. Kirichkov, “Studying the aerodynamics of the TPP-210A boiler furnace when it is shifted to operate with dry-ash removal and vortex fuel combustion,” Therm. Eng. 65, 691–697 (2018). https://doi.org/10.1134/S0040601518100129

    Article  Google Scholar 

  2. L. A. Bulysova, A. L. Berne, V. D. Vasil’ev, M. N. Gutnik, and M. M. Gutnik, “Study of sequential two-stage combustion in a low-emission gas turbine combustion chamber,” Therm. Eng. 65, 806–817 (2018). https://doi.org/10.1134/S0040601518110010

    Article  Google Scholar 

  3. S. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere, Washington, 1980; Energoatomizdat, Moscow, 1984).

  4. S. V. Patankar and D. B. Spalding, “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows,” Int. J. Heat Mass Transfer 15, 1787–1806 (1972).

    Article  MATH  Google Scholar 

  5. V. N. Malyukh, Introduction to Modern Computer-Aided Design Systems: A Course of Lectures (DMK, Moscow, 2010) [in Russian].

    Google Scholar 

  6. K. N. Volkov and V. N. Emel’yanov, Computational Technologies in Problems of Fluid and Gas Mechanics (Fizmatlit, Moscow, 2012) [in Russian].

    Google Scholar 

  7. N. N. Fedorova, S. A. Val’ger, and M. N. Danilov, Basics of Work in ANSYS 17 (DMK, Moscow, 2017) [in Russian].

    Google Scholar 

  8. I. V. Semenov and P. S. Utkin, Numerical Simulation of Detonation Processes in Gases (Inst. Avtom. Proekt. Ross. Akad. Nauk, Moscow, 2011) [in Russian].

    Google Scholar 

  9. P. G. Ciarlet and J. L. Lions, Handbook of Numerical Analysis (Elsevier, Amsterdam, 2000), Vol. 7.

    Google Scholar 

  10. S. Echi, A. Bouabidi, Z. Driss, and M. Salah Abid, “CFD simulation and optimization of industrial boiler,” Energy 169, 105–114 (2019).

    Article  Google Scholar 

  11. P. V. Roslyakov, Yu. V. Proskurin, and D. A. Khokhlov, “Development of combined low-emissions burner devices for low-power boilers,” Therm. Eng. 64, 574–584 (2017). https://doi.org/10.1134/S0040601517080092

  12. L. A. Bulysova, V. D. Vasil’ev, A. L. Berne, M. N. Gutnik, and A. V. Ageev, “International experience in developing low-emission combustors for land-based, large gas-turbine units: Mitsubishi Heavy Industries’ equipment,” Therm. Eng. 65, 287–293 (2018). https://doi.org/10.1134/S0040601518050026

    Article  Google Scholar 

  13. L. A. Bulysova, V. D. Vasil’ev, and A. L. Berne, “Low-emission combustion of fuel in aeroderivative gas turbines,” Therm. Eng. 64, 891– 897 (2017). https://doi.org/10.1134/S0040601517120011

    Article  Google Scholar 

  14. V. A. Dvoinishnikov, D. A. Khokhlov, V. P. Knyaz’kov, and A. Yu. Ershov, “Influence of the technique for injection of flue gas and the configuration of the swirl burner throat on combustion of gaseous fuel and formation of nitrogen oxides in the flame,” Therm. Eng. 64, 364–371 (2017). https://doi.org/10.1134/S0040601517050020

    Article  Google Scholar 

  15. V. A. Dvoinishnikov and D. A. Khokhlov, “The effect the design solutions adopted for a pilot vortex burner with central admission of medium have on setting up the conditions for stable combustion of air-fuel mixture,” Therm. Eng. 62, 278–285 (2015). https://doi.org/10.1134/S0040601515040011

    Article  Google Scholar 

  16. G. Schweiger, C. Gomes, I. Hafner, G. Engel, T. S. Nouidui, N. Popper, and J.-P. Schoggl, “Co-simulation: Leveraging the potential of urban energy system simulation,” Euroheat Power (Engl. Ed.) 15 (1), 13–16 (2018).

  17. D. M. Wells, P. Peturaud, and S. K. Yagnik, “Overview of CFD round robin benchmark of the high fidelity fuel rod bundle NESTOR experimental data,” in Proc. 16th Int. Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-16), Chicago, IL, Aug. 30 – Sept. 4, 2015 (Am. Nucl. Soc., LaGrange Park, IL, 2015).

  18. P. V. Roslyakov, D. A. Khokhlov, L. E. Egorova, M. N. Zaichenko, and B. G. Grisha, “Optimization of remote economizer flue duct using the ANSYS software,” in Proc. 4th Int. Conf. on Information Technologies in Engineering Education (Inforino), Moscow, Oct. 23–26, 2018 (IEEE, Piscataway, NJ, 2018), pp. 1–4. https://doi.org/10.1109/INFORINO.2018.8581774

  19. Introduction to ANSYS CFX. Lecture 03: Domains, Boundary Conditions and Sources (ANSYS, 2015). https://vdocuments.mx/introduction-to-ansys-cfx-1-2015-ansys-inc-march-13-2015-ansys-confidential.html.

  20. J. B. Cavalcante-Neto, “Survey meshing lection RP-CMOD08,” lia.ufc.br: Laboratórios de Pesquisa em Ciência da Computação Departamento de Computação–UFC. http://www.lia.ufc.br/~joa-quimb/lects/ Survey%20Meshing%20Joaquim%20RPCMOD_Abr2008. pps.

  21. Introduction to ANSYS Meshing 14.5, ANSYS Customer Portal. https://support.ansys.com/AnsysCustomerPortal/en_us/Knowledge%20Resources/Tutorials% 20&%20Training%20Materials/Training%20Files/Introduction+to+ANSYS+Meshing+14.5.

  22. D. B. Spalding, “Concentration fluctuations in a round turbulent free jet,” Chem. Eng. Sci. 26, 95–107 (1971).

    Article  MathSciNet  Google Scholar 

  23. Ansys Help 14.5 Release. Digital Manual for Software Package ANSYS 14.5.

  24. C. Yuan, J. Song, and M. Liu, “Comparison of compressible and incompressible numerical methods in simulation of a cavitating jet through a poppet valve,” Eng. Appl. Comput. Fluid Mech. 13 (1), 67–90 (2019). https://doi.org/10.1080/19942060.2018.1552202

    Google Scholar 

  25. S. A. Orszag, “Analytical theories of turbulence,” J. Fluid Mech. 41, 363–386 (1970).

    Article  MATH  Google Scholar 

  26. P. V. Roslyakov, I. V. Morozov, M. N. Zaichenko, and V. T. Sidorkin, “Computational investigations of low-emission burner facilities for char gas burning in a power boiler,” Therm. Eng. 63, 40–49 (2016). https://doi.org/10.1134/S0040601516040066

    Google Scholar 

  27. P. R. Spalart, “Strategies for turbulence modelling and simulations,” Int. J. Heat Fluid Flow. 21, 252–263 (2000).

    Article  Google Scholar 

  28. P. I. Kudinov, Comparative Testing of Spalart–Allmaras and Menter Turbulence Models on the Transonic Flow Problem of a Single RAE2822 Profile (Dnipropetr. Nats. Univ., Dnipropetrovsk, Ukraine, 2004).

    Google Scholar 

  29. Yu. V. Lapin, “Statistical theory of turbulence (The past and the future — A brief outline of ideas),” Nauch.-Tekh. Vedomosti S.-Peterb. Gos. Univ., No. 2, 1–34 (2004).

  30. G. Eggenspieler, Turbulence Modeling. http://www.ansys. com/staticassets/ANSYS/Conference/Confidence/San% 20Jose/Downloads/turbulence-summary-4.pdf.

  31. P. R. Spalart and S. R. Allmaras, “A one-equation turbulence model for aerodynamic flows,” in Proc. 30th Aerospace Sciences Meet. and Exhib., Reno, NV, Jan, 6–9, 1992 (AIAA, Washington, DC, 1992). https://doi.org/10.1016/0376-0421(64)900041

  32. B. E. Launder and D. B. Spalding, “The numerical computation of turbulent flow,” Comput. Methods Appl. Mech. Eng., No. 3, 269–289 (1974). https://doi.org/10.1016/0045-7825(74)90029-2

  33. D. Achim, J. Naser, Y. S. Morsi, and S. Pascoe, “Numerical investigation of full scale coal combustion model of tangentially fired boiler with the effect of mill ducting,” Heat Mass Transfer 46, 1–13 (2009). https://doi.org/10.1007/s00231-009-0539-0

    Article  Google Scholar 

  34. J. E. Macphee, M. Sellier, M. Jermy, and E. Tadulan, “CFD modeling of pulverized coal combustion in a rotary lime kiln,” in Proc. 7th Int. Conf. on CFD in the Minerals and Process Industries, Melbourne, Australia, Dec. 9–11, 2009 (CSIRO, Melbourne, 2009).

  35. A. Aroussi, S. Kucukgokoglan, M. Menacer, and S. J. Pickering, “Numerical simulation of a single burner flow,” in Proc. 9th Int. Symp. on Flow Visualization, Edinburgh, August 22–25, 2000 (G. M. Carlomagno, I. Grant, Edinburgh, 2000).

  36. M. G. Carvalho, T. Farias, and P. Fontes, “Predicting radiative heat transfer in absorbing, emitting, and scattering media using the discrete transfer method,” in Fundamentals of Radiation Heat Transfer (ASME, New York, 1991), in Ser.: Proceedings of the ASME Heat Transfer Division, Vol. 170, pp. 17–26.

  37. E. H. Chui and G. D. Raithby, “Computation of radiant heat transfer on a non-orthogonal mesh using the finite-volume method,” Numer. Heat Transfer. Part B: Fundam. 23, 269–288 (1993). https://doi.org/10.1080/10407799308914901

    Article  Google Scholar 

  38. G. D. Raithby and E. H. Chui, “A finite-volume method for predicting a radiant heat transfer in enclosures with participating media,” J. Heat Transfer 112, 415–423 (1990). https://doi.org/10.1115/1.2910394

    Article  Google Scholar 

  39. E. G. Kazakova and T. L. Lekanova, Fuel and Combustion Theory: Study Aid (SLI, Syktyvkar, 2017) [in Russian]. http://lib.sfi.komi.com.

  40. R. B. Akhmedov, O. N. Bryukhanov, and A. S. Isserlina, Rational Usage of Gas in Power Generating Units: Reference Guide, Ed. by. A. S. Isserlin (Nedra, Leningrad, 1990) [in Russian].

    Google Scholar 

  41. Z. I. Geller, Fuel Oil as Fuel (Nedra, Moscow, 1965) [in Russian].

    Google Scholar 

  42. Basic Physical Properties and Characteristics of Petroleum and Petroleum Products: Lecture Courses of the Faculty of Chemistry, Department of Petroleum Chemistry and Petrochemical Synthesis of N.I. Lobachevsky Nizhny Novgorod State University [in Russian]. http:// www.unn.ru/chem/neft/htmls/index.php?page=lern.

  43. S. S. Nametkin, Petroleum Chemistry (GONTI, Leningrad, 1939) [in Russian].

  44. W. L. Lom and A. F. Williams, Substitute Natural Gas: Manufacture and Properties (Wiley, New York, 1976; Nedra, Moscow, 1979).

  45. D. P. Schmidt, I. Nouar, P. K. Senecal, C. J. Rutland, J. K. Martin, and R. D. Reitz, Pressure-Swirl Atomization in the Near Field, SAE Technical Paper No. 1999-01-0496 (SAE, 1999).

  46. A. H. Lefebvre, Atomization and Sprays (Hemisphere, Washington, DC, 1989).

  47. Z. Han, S. Perrish, P. V. Farrell, and R. D. Reitz, “Modeling atomization processes of pressure-swirl hollow-cone fuel sprays,” Atomization Sprays 7, 663–684 (1997). https://doi.org/10.1615/AtomizSpr.v7.i6.70

    Article  Google Scholar 

  48. P. K. Senecal, D. P. Schmidt, I. Nouar, C. J. Rutland, and R. D. Reitz, “Modeling high speed viscous liquid sheet atomization,” Int. J. Multiphase Flow 25, 1073–1097 (1999). https://doi.org/10.1016/S0301-9322(99)00057-9

    Article  MATH  Google Scholar 

  49. H. Hiroyasu and T. Kadota, “Fuel droplet size distribution in diesel combustion chamber,” SAE paper 740715 (SAE, 1974).

  50. P. V. Roslyakov, Yu. V. Proskurin, and M. N. Zaichenko, “Study of the possibility of thermal utilization of contaminated water in low-power boilers,” Therm. Eng. 64, 644–651 (2017). https://doi.org/10.1134/S0040601517090075

    Article  Google Scholar 

  51. B. F. Magnussen and B. H. Hjertager, “On mathematical models of turbulent combustion with special emphasis on soot formation and combustion,” in Proc. 16th Int. Symp. on Combustion, Cambridge, MA, Aug. 15–20, 1976 (Combustion Inst., Pittsburgh, PA, 1976).

  52. P. V. Roslyakov, Methods of Environmental Protection (Mosk. Energ. Inst., Moscow, 2007) [in Russian].

    Google Scholar 

  53. Ya. B. Zel’dovich, P. Ya. Sadovnikov, and D. A. Frank-Kamenetskii, Nitrogen Oxidation during Combustion (Akad. Nauk SSSR, Moscow, 1947) [in Russian].

    Google Scholar 

  54. C. P. Fenimore, “Formation of nitric oxidein premixed hydrocarbon flame,” in Proc. 13th Int. Symp. on Combustion, Salt Lake City, UT, Aug. 23–29, 1970 (Combustion Inst., Pittsburgh, PA, 1971).

  55. P. V. Roslyakov and Ch. Beitszin, “Nature of prompt nitric oxide emission in organic fuel combustion,” Teploenergetika, No. 1, 71–75 (1994).

    Google Scholar 

  56. G. G. De Soete, “Overall reaction rates of NO and N2 formation from fuel nitrogen,” in Proc. 15th Int. Symp. on Combustion, Tokyo, Japan, Aug. 25–31, 1974 (Combustion Inst., Pittsburgh, PA, Pittsburgh, 1975).

  57. P. J. Ashman, B. S. Haynes, P. F. Nelson, P. C. Nancarrow, J. Bus, P. M. Nicholls, T. Prokopiuk, A. R. Buckey, and C. Z. Li, Improved Techniques for the Prediction of NO x Formation from Char Nitrogen, ACARP Report No. C4065. (Australian Coal Association. CSIRO Energy Technology, North Ryde, NSW, Australia, 1999).

  58. P. V. Roslyakov, “Calculation of fuel nitrogen oxides formation during combustion of nitrogen-containing fuels,” Teploenergetika, No. 1, 37–41 (1986).

    Google Scholar 

  59. D. A. Khokhlov, Development and Research of a Vortex Kindling Burner for Burning Dust of Increased Reactivity, Candidate’s Dissertation in Engineering (Moscow, 2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Roslyakov.

Additional information

Translated by V. Filatov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roslyakov, P.V., Khudyakov, I.V., Khokhlov, D.A. et al. Experience Gained with CFD-Modeling of Liquid and Gaseous Fuel Combustion Processes in Power Installations (Review). Therm. Eng. 66, 599–618 (2019). https://doi.org/10.1134/S0040601519090039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601519090039

Keywords:

Navigation