Skip to main content

Numerical Modelling of Pulverised Coal Combustion

Handbook of Multiphase Flow Science and Technology
  • 472 Accesses

Abstract

Many thermal power generation plants rely on combustion of pulverised coal carried out in large furnaces. Design and improvement of these furnaces can be effectively assisted by using numerical modelling with Computational Fluid Dynamics (CFD) techniques to develop a detailed picture of the conditions within the furnace, and the effect of operating conditions, coal type, and furnace design on those conditions. The equations governing CFD models of pulverised coal combustion are described, with a focus on sub-models needed for devolatilisation, combustion and heat transfer. The use of the models is discussed with reference to examples of CFD modelling of brown coal fired furnaces in the Latrobe Valley in Australia and black coal fired furnaces described in the literature. Extensions to the CFD models that are required to tackle specific industrial and environmental issues are also described. These issues include control of NOx and SOx emissions and the effect of slagging and fouling on furnace and boiler operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • D. Allardice, The utilisation of low rank coals. Aust. Coal Rev. (10), 40–46 (2000)

    Google Scholar 

  • ANSYS/CFX, ANSYS/CFX 16.0 Theory Guide (ANSYS, Inc, Canonsburg, 2015)

    Google Scholar 

  • ANSYS/FLUENT, ANSYS FLUENT 16.0 User’s Guide (ANSYS, Inc, Canonsburg, 2015)

    Google Scholar 

  • R. Backreedy, L. Fletcher, L. Ma, M. Pourkashanian, A. Williams, Modelling pulverised coal combustion using a detailed coal combustion model. Combust. Sci. Technol. 178, 763–787 (2006)

    Article  Google Scholar 

  • R. Backreedy et al., Prediction of unburned carbon and NOx in a tangentially fired power station using single coals and blends. Fuel 84, 2196–2203 (2005)

    Article  Google Scholar 

  • P. Basu, C. Kefa, L. Jestin, Boilers and Burners: Design and Theory (Springer, New York, 1999)

    Google Scholar 

  • S. Belosevic, M. Sijercic, S. Oka, D. Tucakovic, Three-dimensional modeling of utility boiler pulverized coal tangentially fired furnace. Int. J. Heat Mass Transf. 49, 3371–3378 (2006)

    Article  Google Scholar 

  • A. Benim, B. Epple, B. Krohmer, Modelling of pulverised coal combustion by a Eulerian-Eulerian two-phase flow formulation. Progr. Comput. Fluid Dyn. Int. J. 5, 345–361 (2005)

    Article  MATH  Google Scholar 

  • K.S. Bhambare, Z. Ma, P. Lu, CFD modeling of MPS coal mill with moisture evaporation. Fuel Process. Technol. 91, 566–571 (2010)

    Article  Google Scholar 

  • R.D. Boardman, L.D. Smoot, in Fundamentals of Coal Combustion: For Clean and Efficient Use, ed by L. D. Smoot. Pollutant formation and control, Chapter 6 (Elsevier Science Publishers, Amsterdam, 1993)

    Google Scholar 

  • BREE, 2014 Australian Energy Update (Bureau of Resources and Energy Economics, Canberra, 2014)

    Google Scholar 

  • A.L. Brown, T.H. Fletcher, Modeling soot derived from pulverized coal. Energy Fuel 12, 745–757 (1998)

    Article  Google Scholar 

  • L. Chen, S.Z. Yong, A.F. Ghoniem, Modeling the slag behavior in three dimensional CFD simulation of a vertically-oriented oxy-coal combustor. Fuel Process. Technol. 112, 106–117 (2013)

    Article  Google Scholar 

  • L.I. Díez, C. Cortés, J. Pallarés, Numerical investigation of NOx emissions from a tangentially-fired utility boiler under conventional and overfire air operation. Fuel 87, 1259–1269 (2008)

    Article  Google Scholar 

  • T.H. Duong, Mathematical modelling of pulverised Victorian brown coal combustion and heat transfer in a plug-flow reactor, in Proceedings of Third Australian Conference on Heat and Mass Transfer (1985)

    Google Scholar 

  • T.H. Duong, Modelling of brown coal combustion in one-dimension, NERDDP Project 931, End of grant Report, Report No ND/87/040, The State Electricity Commission of Victoria, 1987

    Google Scholar 

  • P. Edge et al., Combustion modelling opportunities and challenges for oxy-coal carbon capture technology. Chem. Eng. Res. Des. 89, 1470–1493 (2011)

    Article  Google Scholar 

  • EIA, International Energy Outlook 2013 (U.S. Energy Information Administration, Washington, DC, 2013)

    Google Scholar 

  • J. Fan, L. Qian, Y. Ma, P. Sun, K. Cen, Computational modeling of pulverized coal combustion processes in tangentially fired furnaces. Chem. Eng. J. 81, 261–269 (2001)

    Article  Google Scholar 

  • M.A. Field, D.W. Gill, B.B. Morgan, P.G.W. Hawksley, Combustion of Pulverized Coal (BCURA, Leatherhead, 1967), pp. 189–192

    Google Scholar 

  • W. Fiveland, R. Wessel, Numerical model for predicting performance of three-dimensional pulverized-fuel fired furnaces. J. Eng. Gas Turbines Power 110, 117–126 (1988)

    Article  Google Scholar 

  • A. German, T. Mahmud, Modelling of non-premixed swirl burner flows using a Reynolds-stress turbulence closure. Fuel 84, 583–594 (2005)

    Article  Google Scholar 

  • J. Gibb, in Cited in ANSYS/CFX 16.0 Theory Guide. Combustion of residual char remaining after devolatilization. Lecture at course of pulverized coal combustion imperial college (ANSYS, Inc., Canonsburg, 1985)

    Google Scholar 

  • D.M. Grant, R.J. Pugmire, T.H. Fletcher, A.R. Kerstein, Chemical model of coal devolatilization using percolation lattice statistics. Energy Fuel 3, 175–186 (1989)

    Article  Google Scholar 

  • S. Hodges, J. Holden, in A Continuing Education Course on the Science and Technology of Lignite Utilisation. Impact of coal quality on power station performance (CRC for Clean Power from Lignite, Melbourne, 2003)

    Google Scholar 

  • IIBD, Improving industrial burner design with computational fluid dynamics tools: progress, needs, and R&D priorities. Workshop Report (2002)

    Google Scholar 

  • J. Jones, M. Pourkashanian, A. Williams, R. Chakraborty, J. Sykes, Modeling of Coal Combustion Processes – A Review of Present Status and Future Needs (Pittsburgh Coal Conference, Pittsburgh, 1998)

    Google Scholar 

  • J.C. Jones, W.O. Stacy Devolatilization of Victorian brown coal. Part 2. Oxidizing conditions, R& D ReportND/86/025, State Electricity Commission of Victoria, (1986)

    Google Scholar 

  • R. Jovanovic, A. Milewska, B. Swiatkowski, A. Goanta, H. Spliethoff, Sensitivity analysis of different devolatilisation models on predicting ignition point position during pulverized coal combustion in O2/N2 and O2/CO2 atmospheres. Fuel 101, 23–37 (2012)

    Article  Google Scholar 

  • L.T. Kiss, D.J. Brockway, A.M. George, W.O. Stacy Properties of brown coals from the Rosedale, Stradbroke and Gormandale fields. SECV, Research and Development Department Report No SC/84/85 (1984)

    Google Scholar 

  • B.E. Launder, D. Spalding, The numerical computation of turbulent flows. Comput. Method Appl. M 3, 269–289 (1974)

    Article  MATH  Google Scholar 

  • T. Le Bris, F. Cadavid, S. Caillat, S. Pietrzyk, J. Blondin, B. Baudoin, Coal combustion modelling of large power plant, for NOx abatement. Fuel 86, 2213–2220 (2007)

    Article  Google Scholar 

  • K. Li, S. Thompson, J. Peng, Modelling and prediction of NOx emission in a coal-fired power generation plant. Control. Eng. Pract. 12, 707–723 (2004)

    Article  Google Scholar 

  • F. Lockwood, A. Salooja, The prediction of some pulverized bituminous coal flames in a furnace. Combust. Flame 54, 23–32 (1983)

    Article  Google Scholar 

  • B.F. Magnussen, B. Hjertager, On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow, in 19th AIAA Aerospace Meeting, St. Louis, 1981.

    Google Scholar 

  • B.F. Magnussen, B.H. Hjertager, in Symposium (International) on Combustion. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion, vol 1 (Elsevier, Amesterdam, 1977), pp. 719–729

    Google Scholar 

  • F.R. Menter, Improved two-equation k-omega turbulence models for aerodynamic flows. NASA STI/Recon Technical Report N 93: 22809 (1992)

    Google Scholar 

  • F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994)

    Article  Google Scholar 

  • R.E. Mitchell, An intrinsic kinetics-based, particle-population balance model for char oxidation during pulverized coal combustion. P Combust Inst 28, 2261–2270 (2000)

    Article  Google Scholar 

  • M. Mulcahy, W. Morley, I. Smith Combustion, gasification and oxidation. The Science of Victorian Brown Coal: structure, Properties, and Consequences for Utilization (1991), p. 359

    Google Scholar 

  • S. Niksa, Coal combustion modelling, vol 31 (IEA Coal Research, London, 1996)

    Google Scholar 

  • S. Ouyang, H. Yeasmin, J. Mathews, A pressurized drop-tube furnace for coal reactivity studies. Rev. Sci. Instrum. 69, 3036–3041 (1998)

    Article  Google Scholar 

  • S. Perera, O. Faltsi-Saravelou, SOx formation model for turbulent combustion applications, in Third European Combustion Meeting ECM (2007)

    Google Scholar 

  • R.A. Roberts, D.J. Loveridge, Devolatilisation and combustion rate measurements on pulverised fuel particles of Morwell, Morwell Woody and Loy Yang coal. Document 4C/47, British Coal Utilisation Research Association (1969)

    Google Scholar 

  • R.B. Sainsbury, P.G.W. Hawksley, Devolatilisation and combustion rate measurements on pulverised fuel particles of Yallourn Open Cut Coal. Combustion Note 825. British Coal Utilisation Research Association (1969)

    Google Scholar 

  • K.M. Saqr, Comments on:“CFD analysis on the influence of helical carving in a vortex flow solar reactor” by N. Ozalp and D. JayaKrishna (Int. J. Hydrogen Energy 2010: 35, 6248–6260). Int. J. Hydrogen. Energy 36, 2320–2322 (2011)

    Article  Google Scholar 

  • S. Sazhin, E. Sazhina, O. Faltsi-Saravelou, P. Wild, The P-1 model for thermal radiation transfer: advantages and limitations. Fuel 75, 289–294 (1996)

    Article  Google Scholar 

  • M. Seggiani, Modelling and simulation of time varying slag flow in a Prenflo entrained-flow gasifier. Fuel 77, 1611–1621 (1998)

    Article  Google Scholar 

  • P.J. Street Single particle studies of brown coal combustion. CEGB Research Division Memorandum, MM/COMB, TH94 (1979)

    Google Scholar 

  • Z.F. Tian, G.J. Nathan, Y. Cao, Numerical modelling of flows in a solar-enhanced vortex gasifier: Part 1, comparison of turbulence models. Progr. Comput. Fluid Dyn. Int. J. 15, 114–122 (2015)

    Article  Google Scholar 

  • Z.F. Tian, J.Y. Tu, G.H. Yeoh, Numerical simulation and validation of dilute gas-particle flow over a backward-facing step. Aerosol Sci. Technol. 39, 319–332 (2005)

    Article  Google Scholar 

  • Z.F. Tian, P.J. Witt, M.P. Schwarz, W. Yang, Comparison of two-equation turbulence models in simulation of a non-swirl coal flame in a pilot-scale furnace. Combust. Sci. Technol. 181, 954–983 (2009)

    Article  Google Scholar 

  • Z.F. Tian, P.J. Witt, M.P. Schwarz, W. Yang, Modeling issues in CFD simulation of brown coal combustion in a utility furnace. J. Compt. Multiph. Flow 2, 73–88 (2010a)

    Article  Google Scholar 

  • Z.F. Tian, P.J. Witt, M.P. Schwarz, W. Yang, Numerical modeling of Victorian brown coal combustion in a tangentially fired furnace. Energy Fuel 24, 4971–4979 (2010b)

    Article  Google Scholar 

  • Z.F. Tian, P.J. Witt, M.P. Schwarz, W. Yang, Combustion of predried brown coal in a tangentially fired furnace under different operating conditions. Energy Fuel 26, 1044–1053 (2012)

    Article  Google Scholar 

  • Z.F. Tian, P.J. Witt, W. Yang, M.P. Schwarz, Numerical simulation and validation of gas-particle rectangular jets in crossflow. Comput. Chem. Eng. 35, 595–605 (2011)

    Article  Google Scholar 

  • D. Tillman, The Combustion of Solid Fuels and Wastes (Academic Press, San Diego, 1991)

    Google Scholar 

  • J. Truelove, D. Holcombe, in Symposium (International) on Combustion. Measurement and modelling of coal flame stability in a pilot-scale combustor, vol 1 (Elsevier, Amesterdam, 1991), pp. 963–971

    Google Scholar 

  • M. Vascellari, G. Cau, Influence of turbulence–chemical interaction on CFD pulverized coal MILD combustion modeling. Fuel 101, 90–101 (2012)

    Article  Google Scholar 

  • H.K. Versteeg, W. Malalasekera, An introduction to computational fluid dynamics: the finite volume method (Pearson Education, Harlow, 2007)

    Google Scholar 

  • R. Viskanta, M. Mengüç, Radiation heat transfer in combustion systems. Prog. Energy Combust. Sci. 13, 97–160 (1987)

    Article  Google Scholar 

  • S. Visona, B. Stanmore, Modelling NO formation in a swirling pulverized coal flame. Chem. Eng. Sci. 53, 2013–2027 (1998)

    Article  Google Scholar 

  • X. Wang, D. Zhao, L. He, L. Jiang, Q. He, Y. Chen, Modeling of a coal-fired slagging combustor: development of a slag submodel. Combust. Flame 149, 249–260 (2007)

    Article  Google Scholar 

  • R. Weber, A. Peters, P. Breithaupt, B. Visser, Mathematical modeling of swirling flames of pulverized coal: what can combustion engineers expect from modeling? J. Fluids Eng. 117, 289–297 (1995)

    Article  Google Scholar 

  • R. Weber, B. Visser, F. Boysan, Assessment of turbulence modeling for engineering prediction of swirling vortices in the near burner zone. Int. J. Heat Fluid Flow 11, 225–235 (1990)

    Article  Google Scholar 

  • D.C. Wilcox, Reassessment of the scale-determining equation for advanced turbulence models. AIAA J. 26, 1299–1310 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • A. Williams, M. Pourkshanian, J.M. Jones, N. Skorupska, Combustion and Gasification of Coal (Taylor & Francis, New York, 2000)

    Google Scholar 

  • Z. Wu, Fundamentals of Pulverised Coal Combustion (IEA Clean Coal Centre Reports, London, 2005)

    Google Scholar 

  • M. Xu, J. Azevedo, M. Carvalho, Modeling of a front wall fired utility boiler for different operating conditions. Comput. Method Appl. M 190, 3581–3590 (2001)

    Article  MATH  Google Scholar 

  • H. Yeasmin, J. Mathews, S. Ouyang, Rapid devolatilisation of Yallourn brown coal at high pressures and temperatures. Fuel 78, 11–24 (1999)

    Article  Google Scholar 

  • G.H. Yeoh, K.K. Yuen, Computational Fluid Dynamics in Fire Engineering: Theory, Modelling and Practice (Butterworth-Heinemann, Amsterdam, 2009)

    Google Scholar 

  • J. Zhang, S. Nieh, Comprehensive modelling of pulverized coal combustion in a vortex combustor. Fuel 76, 123–131 (1997)

    Article  Google Scholar 

  • L. Zhou, L. Li, R. Li, J. Zhang, Simulation of 3-D gas-particle flows and coal combustion in a tangentially fired furnace using a two-fluid-trajectory model. Powder Technol. 125, 226–233 (2002)

    Article  Google Scholar 

Download references

Acknowledgment

The first author gratefully acknowledges the support of the Australian Research Council through Grant DP150102230.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao F. Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry

Tian, Z.F., Witt, P.J., Schwarz, M., Yang, W. (2016). Numerical Modelling of Pulverised Coal Combustion. In: Yeoh, G. (eds) Handbook of Multiphase Flow Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-4585-86-6_9-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-4585-86-6_9-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-4585-86-6

  • Online ISBN: 978-981-4585-86-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Numerical Modelling of Pulverised Coal Combustion
    Published:
    30 September 2017

    DOI: https://doi.org/10.1007/978-981-4585-86-6_9-2

  2. Original

    Numerical Modelling of Pulverised Coal Combustion
    Published:
    15 February 2017

    DOI: https://doi.org/10.1007/978-981-4585-86-6_9-1