Skip to main content
Log in

Layouts of trigeneration plants for centralized power supply

  • Steam-Turbine, Gas-Turbine, and Combined-Cycle Plants and Their Auxiliary Equipment
  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

One of the possible and, under certain conditions, sufficiently effective methods for reducing consumption of fuel and energy resources is the development of plants for combined generation of different kinds of energy. In the power industry of Russia, the facilities have become widespread in which the cogeneration technology, i.e., simultaneous generation of electric energy and heat, is implemented. Such facilities can use different plants, viz., gas- and steam-turbine plants and gas-reciprocating units. Cogeneration power supply can be further developed by simultaneously supplying the users not only with electricity and heat but also with cold. Such a technology is referred to as trigeneration. To produce electricity and heat, trigeneration plants can use the same facilities that are used in cogeneration, namely, gas-turbine plants, steam-turbine plants, and gas-reciprocating units. Cold can be produced in trigeneration plants using thermotransformers of various kinds, such as vaporcompression thermotransformers, air thermotransformers, and absorption thermotransformers, that operate as chilling machines. The thermotransformers can also be used in the trigeneration plants to generate heat. The main advantage of trigeneration plants based on gas-turbine plants or gas-reciprocating units over cogeneration plants is the increased thermodynamic power supply efficiency owing to utilization of the waste-gas heat not only in winter but also in summer. In the steam-turbine-based trigeneration plants equipped with absorption thermotransformers, the enhancement of the thermodynamic power supply efficiency is determined by the increase in the heat extraction load during the nonheating season. The article presents calculated results that demonstrate higher thermodynamic efficiency of a gas-turbine-based plant with an absorption thermotransformer that operates in the trigeneration mode compared with a cogeneration gas-turbine plant. The structural arrangements of trigeneration plants designed to supply electricity, heat, and cold to the users are shown and the principles of their operation are described. The article presents results of qualitative analysis of different engineering solutions applied to select one combination of power- and heat-generating equipment and thermotransformers or another.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Klimenko, A. G. Tereshin, T. N. Andreichenko, A. V. Bokarev, E. V. Markovcheva, and L. P. Rogatovskaya, “Estimation of electrical energy consumption for a air conditioning in Moscow in the conditions of climate coming warming,” Energosber. Vodopodg., No. 1, 2–6, (2011).

    Google Scholar 

  2. V. S. Agababov, A. Yu. Arkharova, and N. V. Malafeeva, RF Patent 46565, Byull. Otkr. Izobr., 2005, no. 16.

    Google Scholar 

  3. J. Miller, Kalte aus Fernwarme im Aufwind, Blickpunkt AGFW aktuell, 2005.

    Google Scholar 

  4. K. Lucas, M. Gebhardt, H. Kohl, T. Steinrötter, Ableitung von Kostenfunktionen für Komponenten der rationellen Energienutzung. Stiftung Industrieforschung Forschungsvorhaben (Institut fur Energie-und Umwelttechnik, Duisburg, 2002).

    Google Scholar 

  5. D. Baumann, Energiewirtschaftliche Bewertung der dezentralen Kraft–Warme–Kalte–Kopplung, Dissertation, (VDI-Verlag, Dusseldorf, 2004).

    Google Scholar 

  6. M. Haider and G. Luedking, Auslegung und Wirtschaftlichkeit von KWKK–Anlagen. Teil 1. Luft-und Kältetechnik 2005.

    Google Scholar 

  7. M. Haider and G. Luedking, Auslegung und Wirtschaftlichkeit von KWKK Anlagen. Teil 2. Luft-und Kältetechnik 2005.

    Google Scholar 

  8. S. Göppert and T. Urbaneck, Machbarkeitsuntersuchung zur Starkung der Kraft–Warme–Kalte–Kopplung durch den Einsatz von Kaltespeichern in großen Versorgungssystemen, (Stadtwerke Chemnitz AG, Bereich Netze, Abteilung Fernwarme Fernkälte, 2006).

    Google Scholar 

  9. O. Ya. Kokorin, “Autonomic station preferences for common production of electric power, heat and cold,” Kholodil. Tekhn., No. 12, 3–6 (2003).

    Google Scholar 

  10. A. I. Bazhenov, E. V. Mikheeva, and Yu. M. Khlebalin, RF Patent 2457352, Byull. Izobret., 2012, no. 24.

    Google Scholar 

  11. V. S. Agababov, A. A. Sukhikh, K. I. Kuznetsov, A. A. Rogova, and A. A. Korshikova, “Experimental study of warm–pump unit work regimes at common production of heat and cold,” Novoe v Ross. Elektroenerg., No. 9, 26–38 (2012).

    Google Scholar 

  12. V. S. Agababov, U. I. Smirnova, and P. A. Tideman, “Development of high–effective vapor–gas thermal electric station schemes with system of simultaneous production of heat and cold,” Novoe v Ross. Elektroenerg., No. 8, 16–25 (2013).

    Google Scholar 

  13. A. V. Klimenko, V. S. Agababov, N. O. Baidakova, Yu. O. Baidakova, E. N. Oleinikova, and P. A. Tideman, “Effect of outside air temperature on thermodynamic efficiency of vapor–gas station with unit for common generation of heat and cold,” Novoe v Ross. Elektroenerg., No. 10, 5–19 (2013).

    Google Scholar 

  14. A. V. Klimenko, V. S. Agababov, A. A. Rogova, and P. A. Tideman, “Specific features of combined generation of electric power, heat, and cold by combined–cycle plants,” Therm. Eng. 62 (3), 166–170 (2015).

    Article  Google Scholar 

  15. A. V. Klimenko, V. S. Agababov, V. D. Rozhnatovskii, Yu. O. Baidakova, A. A. Rogova, and P. A. Tideman, “Trigeneration technical–economic efficiency estimation for vapor–gas plant with vapor–compressed heat pump,” Novoe v Ross. Elektroenerg. No. 12, 5–14 (2013).

    Google Scholar 

  16. A. V. Klimenko, V. S. Agababov, A. A. Rogova, and P. A. Tideman, “Schemes of vapor–gas plant of condensation type and vapor–gas plant–thermal electric station with the systems of simultaneous superposed generation of heat and cold,” Energosber. Vodopodg. 87 (1), 20–23 (2014).

    Google Scholar 

  17. V. S. Agababov, Yu. O. Baidakova, A. V. Klimenko, A. A. Rogova, U. I. Smirnova, and P. A. Tideman, RF Patent 2530971, Byull. Izobr., 2014, no. 29.

    Google Scholar 

  18. J. Pitel and J. Seminsky, “Control of the nonconventional machinery for combined production of heat, cold and electrical energy,” Nonconv. Technol. Rev., No. 2, 83–86 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Agababov.

Additional information

Original Russian Text © A.V. Klimenko, V.S. Agababov, I.P. Il’ina, V.D. Rozhnatovskii, A.V. Burmakina, 2016, published in Teploenergetika.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimenko, A.V., Agababov, V.S., Il’ina, I.P. et al. Layouts of trigeneration plants for centralized power supply. Therm. Eng. 63, 414–421 (2016). https://doi.org/10.1134/S0040601516060045

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601516060045

Keywords

Navigation