Skip to main content
Log in

Manufacturing technologies for photovoltaics and possible means of their development in Russia (Review): Part 2. Modification of production technologies for photoelectric converters, development of contact structures, and choice of promising technologies for expansion of FEC production in Russia

  • Energy Conservation, New and Renewable Energy Sources
  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

As the development of the first part of the review of modern industrial technologies for manufacture of photoelectric converters (PECs) of solar power, the present paper considers modifications of technologies for manufacture of PECs, including various thin-film techniques. Main tendencies in the advancement of contact structures of PECs are described. Formulation and substantiation are made for promising, in the authors' opinion, lines of the development of industry of PECs in Russia based on the upcoming implementation of 1.5 GW network photovoltaic power plants to 2020, which are developed with the national support under conditions of the fulfillment of rigid requirements to manufacture localization. As the most prospective technology for development of the competitive manufacture of photoelectric converters subject to the Russian scientific and engineering groundwork, the authors recommend the technology based on single-crystal silicon of the n type with the passivation of the frontal and rear sides and symmetrical contacts (n-PASHa), which provides the possibility to produce double-faced solar modules also.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. B. Tarasenko and O. S. Popel’, Industrial technologies of photo power engineering and possible ways of their development in Russia (a review). Part 1. General approaches to production of PV cell and basic siliceous technologies, Therm. Eng. No. 11,11(2015).

    Google Scholar 

  2. A. Goodrich, P. Hacke, Q. Wang, B. Sopori, R. Margolis, T. L. James, and M. Woodhouse, “A wafer-based monocrystalline silicon photovoltaics road map: Utilizing known technology improvement opportunities for further reductions in manufacturing costs,” Solar Energy Mater. Solar Cells 114, 110–135 (2013).

    Article  Google Scholar 

  3. B. Xu, K. Littau, J. Zesch, and D. Fork, “Front side metallization of crystalline silicon solar cells using selectively laser drilled contact openings,” Proc. 34th IEEE Photovoltaic Specialists Conf., 2009, pp. 517–522.

    Google Scholar 

  4. J. Zhao, A. Wang, and M. A. Green, “24.5% efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates,” Progr. Photovoltaic: Res. Appl. 7, 471–474 (1999).

    Article  Google Scholar 

  5. N. Guillevin, B. J. B. Heurtault, L. J. Geerligs, and A. W. Weeber, “Development towards 20% efficient Si MWT solar cells for low-cost industrial production,” Energy Procedia 8, 9–16 (2011).

    Article  Google Scholar 

  6. H. Mori, US Patent No. 3278811, 1966.

    Google Scholar 

  7. J. Mandelkorn and J. H. Lamneck, “Simplified fabrication of back surface electric field silicon cells and novel characteristics of such cells,” Proc. 9th Photovoltaic Specialists Conf., Silver Springs, 1972, pp. 66–69.

    Google Scholar 

  8. A. Cuevas, “The early history of bifacial solar cells,” Proc. Eur. Photovoltaic Solar Energy Conf., WIP-Renewable Energies, 2005, Ed. by W. Palz, H. Ossenbrink, and P. Helm, (Munich, Germany), pp. 801–805.

    Google Scholar 

  9. N. M. Bordina, T. M. Golovner, V. V. Zadde, A. K. Zaitseva, A. P. Landsman, and V. I. Streltsova, “Operation of a thin silicon photo converter under illumination on both sides,” Appl. Solar Energy,11(6), 81–86 (1975).

    Google Scholar 

  10. D. S. Strebkov, V. V. Zadde, T. I. Suryaninova, and L. P. Kudeshova, “Solar cells for terrestrial applications,” Geliotekhnika 15, 29–32 (1979).

    Google Scholar 

  11. C. A. Luque, J. Eguren, and J. del Alamo, “50% more output power from an albedo-collecting flat panel using bifacial solar cells,” Solar Energy9(5), 419–420 (1982).

    Google Scholar 

  12. G. G. Untila and M. B. Zaks, “Silicon-based photovoltaics: State of the art and main lines of development,” Therm. Eng. 58, 932–947 (2011).

    Article  Google Scholar 

  13. A. C. Pan, C. del Cañizo and A. Luque, “Effect of thickness on bifacial silicon solar cells,” Proc. 6th Spanish Conf. on Electronic Devices, San Lorenzo de El Escorial. Madrid, 2007, pp. 234–237.

    Google Scholar 

  14. http://us.sunpower.com/

  15. B. Parida, S. Iniyan, and R. Goic, “A review of solar photovoltaic technologies,” Renewable and Sustainable Energy Rev. 15, 1625–1636 (2011).

    Article  Google Scholar 

  16. J. Yang, A. Banerjee, and S. Guha, “Amorphous silicon based photovoltaics–from Earth to the “final frontier”,” Solar Energy Mater. Solar Cells, 78, 597–612 (2003).

    Article  Google Scholar 

  17. L. Ding, M. Boccard, Gr. Bugnon, and M. Benkhaira, “New generation transparent LPCVD ZnO electrodes for enhanced photocurrent in micromorph solar cells and modules,” IEEE J. Photovoltaics2(2), 88–93 (2012).

    Article  Google Scholar 

  18. Y. Tawada and H. Yamagishi, “Mass-production of large size a-Si modules and future plan,” Solar Energy Mater. Solar Cells 66, 95–105 (2001).

    Article  Google Scholar 

  19. C. R. Wronski, B. von Roedern, and A. Kolodziej, “Thin-film Si:H-based solar cells,” Vacuum 82, 1145–1150 (2008).

    Article  Google Scholar 

  20. C. P. Lund, K. Luczak, T. Pryor, J. C. L. Cornish, P. J. Jennings, P. Knipe, and F. Ahjum, “Field and laboratory studies of the stability of amorphous silicon solar cells and modules,” Renewable Energy 22, 287–294 (2001).

    Article  Google Scholar 

  21. M. Z. Hussin, S. Shaari, A. M. Omar, and Z. M. Zain, “Amorphous silicon thin-film: Behaviour of lightinduced degradation,” Renewable and Sustainable Energy Rev. 43, 388–402 (2015).

    Article  Google Scholar 

  22. N. M. Kalabushkina, S. V. Kiseleva, S. V. Mikhailin, A. B. Tarasenko, and A. B. Usanov, “Traditional and advanced photovoltaic modules and their use in photovoltaic systems,” Al’ternativ. Energ. Ekol., No. 13, 10–18 (2013).

    Google Scholar 

  23. S. Taira, Y. Yoshimine, T. Baba, M. Taguchi, H. Kanno, T. Kinoshita, H. Sakata, E. Maruyama, and M. Tanaka, Proc. 22th Eur. Photovoltaic Solar Energy Conf. (EUPVSEC), 2007, pp. 932–935.

    Google Scholar 

  24. G. Fonthal, L. Tirado-Mejial, J. I. Marin-Hurtado, H. Ariza-Calderón, and J. G. Mendoza-Alvarez, “Temperature dependence of the band gap energy of crystalline CdTe,” J. Phys. Chem. Solids 61, 579–583 (2000).

    Article  Google Scholar 

  25. K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: An overview, progress in photovoltaics: Research and applications,” Prog. Photovolt.: Res. Appl. 12, 69–92 (2004). doi: 10.1002/pip.541

    Article  Google Scholar 

  26. K. W. Boer, “Cadmium sulfide enhances solar cell efficiency,” Energy Conversion and Management 52, 426–430 (2011).

    Article  Google Scholar 

  27. M. A. Flores Mendoza, R. Castanedo Pérez, G. Torres Delgado, J. Márquez Marín, A. Cruz Orea, and O. Zelaya Angel, “Structural, morphological, optical and electrical properties of CdTe films deposited by CSS under an argon–oxygen mixture and vacuum,” Solar Energy Mater. Solar Cells 95, 2023–2027 (2011).

    Article  Google Scholar 

  28. FS280 Photoelectric Modules of First Solar Co Specification. http://www.solarshop-europe.net/solar-components/solarmodules/first-solar_fs-280_m_1098.html.

  29. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 44),” Prog. Photovoltaic: Res. Appl. 22, 701–710 (2014).

    Article  Google Scholar 

  30. GIGAOM News Portal, 2013. https://gigaom.com/2013/01/09/13-solar-startups-to-watch-in-2013. Cited September 21, 2013.

  31. Greentechmedia News Portal, 2012. http://www.greentechmedia.com/articles/read/stion-is-having-a-cigssolar-sale. Cited May 16,2012

  32. PV-tech News Portal, 2014. http://www.pvtech.org/news/stion_claims_prototype_cigs_mini_mo dule_conversion_efficiency_of_23.2.

  33. A. V. Naumov, “The new spheres of indium application (problems and prospects),” Tsvetn. Metall., No. 1, 7–10 (2013).

    Google Scholar 

  34. A. Kanevce, I. Repins, and Su-Huai Wei, “Impact of bulk properties and local secondary phases on the Cu2(Zn,Sn)Se4 solar cells open-circuit voltage,” Solar Energy Mater. Solar Cells 133, 119–125 (2015).

    Article  Google Scholar 

  35. Duy-Cuong Nguyen, Seigo Ito, and Dung Viet Anh Dang, “Effects of annealing conditions on crystallization of the CZTS absorber and photovoltaic properties of Cu(Zn,Sn)(S,Se)2 solar cells,” J. Alloys Compd. 632, 676–680 (2015).

    Article  Google Scholar 

  36. L. B. Karlina, A. S. Vlasov, E. P. Rakova, B. Y. Ber, D. Yu. Kazanthev, and V. M. Andreev, “Surface and bulk passivation of A3B5 layers by isovalent dopant diffusion from a localized source,” Phys. B: Condens. Matter 404, 4995–4998 (2009).

    Article  Google Scholar 

  37. V. M. Andreev, A. G. Zabrodskii, and S. O. Kognovitskii, “Integrated wind-solar energy plant with hydrogen cycle of energy storage,” Al’ternativ. Energ. Ekolog.46(2), 99–105 (2007).

    Google Scholar 

  38. G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “26.1% thinfilm GaAs solar cell using epitaxial lift-off,” Solar Energy Mater. Solar Cells 93, 1488–1491 (2009).

    Article  Google Scholar 

  39. V. M. Andreev and V. D. Rumyantsev, “A3B5 based solar cells and concentrating optical elements for space PV modules,” Solar Energy Mater. Solar Cells 44, 319–332 (1996).

    Article  Google Scholar 

  40. S. Braun, G. Hahn, R. Nissler, Chr. Pönisch, and D. Habermann, “Multi-busbar solar cells and modules: High efficiencies and low silver consumption,” Energy Procedia 38, 334–339 (2013).

    Article  Google Scholar 

  41. J. Walter, M. Tranitz, M. Volk, Chr. Ebert, and U. Eitner, “Multi-wire interconnection of busbar-free solar cells,” Energy Procedia 55, 380–388 (2014).

    Article  Google Scholar 

  42. G. G. Untila, T. N. Kost, A. B. Chebotareva, M. B. Zaks, A. M. Sitnikov, and O. I. Solodukha, “A new type of high-efficiency bifacial silicon solar cell with external busbars and a current-collecting wire grid,” Semiconductors 39, 1346–1351 (2005).

    Article  Google Scholar 

  43. On the Stimulation Mechanism of Renewable Energy Sources on the Wholesale Market of Electrical Energy and Power, Russ. Feder. Government Regulation No. 449, 2013.

  44. A. Shah, Green Chip Stocks, No surprises in latest solar bankruptcy, 2012. http://www.greenchipstocks.com/articles/solar-bankruptcy-expected/2023. Cited July 2, 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Tarasenko.

Additional information

Original Russian Text © A.B. Tarasenko, O.S. Popel’, 2015, published in Teploenergetika.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasenko, A.B., Popel’, O.S. Manufacturing technologies for photovoltaics and possible means of their development in Russia (Review): Part 2. Modification of production technologies for photoelectric converters, development of contact structures, and choice of promising technologies for expansion of FEC production in Russia. Therm. Eng. 62, 868–877 (2015). https://doi.org/10.1134/S0040601515120095

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601515120095

Keywords

Navigation