Skip to main content
Log in

Critical properties of aqueous solutions. Part 1: Experimental data

  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

All data available in the literature on the critical properties of binary aqueous solutions like H2O + common salt, H2O + hydrocarbon, H2O + alcohol, H2O + gas, and others are gathered. Methods for determining them are presented together with errors and concentration measurement intervals for each source of data. The format in which the data are presented will allow the readers to quickly find the necessary information on the critical properties of aqueous solutions from the original sources and use them for solving scientific and engineering tasks. Certain general features of the critical lines and phase diagrams of aqueous solutions with volatile and nonvolatile components are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. U. Franck, “Supercritical Water,” in Proceedings of 13 th International Conference on the Properties of Water and Steam, Ed. by P. R. Tremaine, Ph. G. Hill, D. E. Irish, and P. V. Balakrishnan (NRC Research Press, Ottawa, 2000), pp. 22–34.

    Google Scholar 

  2. R. V. Shaw, N. B. Brill, A. A. Clifford, et al., “Supercritical Water-a Medium for Chemistry,” Chem. Eng. News 69, 26–39 (1991).

    Google Scholar 

  3. P. Kritzer and E. Dinjus, “An Assessment of Supercritical Water Oxidation (SCWO). Existing Problems, Possible Solutions and New Reactor Concepts,” J. Chem. Eng. 83, 207–214 (2001).

    Article  Google Scholar 

  4. P. E. Savage, S. Gopalan, T. I. Mizan, et al., “Reactions at Supercritical Conditions: Applications and Fundamentals,” AIChE J. 41, 1723–1778 (1995).

    Article  Google Scholar 

  5. T. Mizuno, “Properties and Application of Supercritical Water,” Corros. Eng. 47, 298–307 (1998).

    Google Scholar 

  6. P. E. Savage, “Organic Chemical Reactions in Supercritical Water,” Chem. Rev. 99, 603–622 (1999).

    Article  Google Scholar 

  7. D. Broll, C. Kaul, A. Kramer, et al., “Chemistry in Supercritical Water,” Angew. Chem., Int. Ed. 38, 2999–3014 (1999).

    Article  Google Scholar 

  8. D. M. Harradine, J. Buelow, P. C. Dell’Orco, et al., “Oxidation Chemistry of Energetic Materials in Supercritical Water,” Hazardous Waste Mater. 10, 233–246 (1993).

    Google Scholar 

  9. E. F. Gloyana and L. Li, “Supercritical Water Oxidation Research and Development Update,” Environ. Prog. 14, 182–192 (1995).

    Article  Google Scholar 

  10. J. W. Tester and J. A. Cline, “Hydrolysis and Oxidation in Subcritical and Supercritical Water: Connecting Process Engineering Science to Molecular Interactions,” Corros. 55, 1088–1100 (1999).

    Article  Google Scholar 

  11. M. Modell, G. G. Gaudet, M. Simson, et al., “Supercritical Water,” Solid Wastes Management, 26–30 (1982).

  12. T. B. Thomason and M. Modell, “Supercritical Water Destruction of Aqueous Waste, Hazardous Waste Mater. 1, 453–467 (1984).

    Google Scholar 

  13. C. N. Staszak, K. C. Malinaaski, and W. R. Killilea, “The Pilot-Scale Demonstration of the MODAR Oxidation Process for the Destruction of Hazardous Organic Waste Materials,” Environ. Prog. 6, 39–43 (1987).

    Article  Google Scholar 

  14. H. E. Barner, C. Y. Huang, T. Johnson, et al., “Supercritical Water Oxidation: An Emerging Technology,” J. Hazardous Mater. 32, 1–17 (1992).

    Article  Google Scholar 

  15. A. I. Abdulagatov, G. V. Stepanov, I. M. Abdulagatov, and M. Dadashev, “Economically and Environmentally Efficient Technologies for Destructing Especially Hazardous Industrial Wastes,” Promyshl. Rossii 8, 79–86 (1999).

    Google Scholar 

  16. Phase Equilibria and Fluid Properties in the Chemical Industry, Ed. by T. S. Storvick and S. I. Sandler (ACS, Washington, 1977).

    Google Scholar 

  17. K. H. Simmrock, R. Janowsky, and A. Ohnsorge, Critical Data of Pure Substances Chemistry Data Series (Dechema, Frankfurt, 1986), Vol. 2, Parts 1 and 2.

    Google Scholar 

  18. C. F. Spencer, T. E. Daubert, and R. P. Danner, “A Critical Review of Correlations for the Critical Properties of Defined Mixtures,” AIChE J. 19, 522–527 (1973).

    Article  Google Scholar 

  19. C. P. Hicks and C. L. Young “The Gas-Liquid Critical Properties of Binary Mixtures,” Chem. Rev. 75, 119–175 (1975).

    Article  Google Scholar 

  20. M. Neichel and E. U. Franck, Critical Curves and Phase Equilibria of Water-n-Alkane Binary Systems to High Pressures and Temperatures,” J. Supercritical Fluids 9, 69–74 (1996).

    Article  Google Scholar 

  21. R. J. Sadus, “Predicting the Gas-Liquid Critical Properties of Binary Mixtures: An Alternative to Conventional Mixing Rules,” Ber. Bunsenges. Phys. Chem. 96, 1454–1459 (1992).

    Google Scholar 

  22. P. Kolá and K. Kojima, “Prediction of Critical Points in Multicomponent Systems Using the PSRK Group Contribution Equation of State,” Fluid Phase Equilib. 118, 175–200 (1996).

    Article  Google Scholar 

  23. L. Vigh, P. Kolá, and K. Kojima, “PSRK Prediction of Critical Points in Binary Mixtures Containing Alkanes or Cycloalkanes,” J. Chem. Eng. Japan 29, 1054–1057 (1996).

    Article  Google Scholar 

  24. S. I. Abu-Eishah, N. A. Darwish, and I. H. Aljundi, “Prediction of Critical Properties of Binary Mixtures Using the PRSV-2 Equation of State,” Int. J. Thermophys. 19, 239–258 (1998).

    Article  Google Scholar 

  25. A. S. Teja R. L. Smith, and S. I. Sandler, “The Calculation of Critical Points of Fluid Mixtures — Effect of Improved Pure Component Critical Point Representation,” Fluid Phase Equilib. 14, 265–272 (1983).

    Article  Google Scholar 

  26. M.-J. Huron, “Use of Soave Equation of State and of Stability Conditions for Calculating Critical Points of Binary Mixtures,” Chem. Eng. Sci. 31, 837–839 (1976).

    Article  Google Scholar 

  27. R. A. Heidemann and A. Khalil, “The Calculation of Critical Points,” AIChE J. 26, 769–779 (1980).

    Article  MathSciNet  Google Scholar 

  28. M. L. Michelsen, “Calculation of Phase Envelopes and the Critical Points for Multicomponent Mixtures,” Fluid Phase Equilib. 4, 1–10 (1980).

    Article  Google Scholar 

  29. A. Kreglevski and W. B. Kay, “The Critical Constants of Conformal Mixtures,” J. Phys. Chem. 73, 3359–3366 (1969).

    Article  Google Scholar 

  30. C. H. Secoy, “The Application of Kinetic Theory to the Critical Curve for Aqueous Solutions of l-l Electrolytes,” J. Phys. Chem. 54, 1337–1346 (1950).

    Article  Google Scholar 

  31. L. Li and E. Kiran, Estimation of Critical Properties of Binary Mixtures Using Group Contribution Methods, Chem. Eng. Commun. 94, 131–138 (1990).

    Article  Google Scholar 

  32. J. S. Rowlinson, Liquids and Liquid Mixtures (Butterworths, London, 1969).

    Google Scholar 

  33. R. J. Sadus, High Pressure Phase Behavior of Multicomponent Fluid Mixtures (Elsevier, Amsterdam, 1992).

    Google Scholar 

  34. A. I. Abdulagatov, G. V. Stepanov, and I. M. Abdulagatov, “Critical Properties of Binary Mixtures Containing Carbon Dioxide. Parts I and II,” Teplofiz. Vys. Temp. 45(1), 94–138, 45 (3), 453–471 (2007).

    Google Scholar 

  35. A. P. Kudchadker, G. H. Alani, and B. J. Zwolinski, “Critical Constants of Organic Substances,” Chem. Rev. 68, 659–735 (1968).

    Article  Google Scholar 

  36. J. F. Mathews, “The Critical Constants of Inorganic Substances,” Chem. Rev. 72, 71–100 (1972).

    Article  Google Scholar 

  37. D. Ambrose and C. Tsonopoulos, “Vapor-Liquid Critical Properties of Elements and Compounds. 2. Normal Alkanes,” J. Chem. Eng. Data 40, 531–546 (1995).

    Article  Google Scholar 

  38. M. L. McGlashan, “Phase Equilibria in Fluid Mixtures,” Pure and Appl. Chem. 57, 89–103 (1985).

    Article  Google Scholar 

  39. G. M. Schneider, “High Pressure Investigations on Fluid System. A Challenge to Experiment, Theory and Application,” Pure and Appl. Chem. 63, 1313–1326 (1991).

    Article  Google Scholar 

  40. W. B. Kay, “Critical Locus Curve and the Phase Behavior of Mixtures,” Acc. Chem. Res. 1, 344–351 (1968).

    Article  Google Scholar 

  41. K. A. Kobe and R. E. Lynn, “The Critical Properties of Elements and Compounds,” Chem. Rev. 52, 117–236 (1953).

    Article  Google Scholar 

  42. G. M. Schneider, “High Pressure Phase Diagrams and Critical Properties of Fluid Mixtures,” in Chemical Thermodynamics. A Specialist Periodical Report, Ed. by M. L. McGlashan (The Chemical Society, London, 1978), Vol. 2, Chap. 4, pp. 105–146.

    Google Scholar 

  43. J. S. Rowlinson, “Critical State of Simple Fluids and Fluid Mixtures,” in Critical Phenomena, Ed. by M. S. Green and J. V. Senders (Misc. Publ., Washington, 1966), pp. 273–282.

    Google Scholar 

  44. M. A. Anisimov, J. V. Sengers, and J. M. H. Levelt Sengers, “Near-Critical Behavior of Aqueous Systems,” in Physical and Chemical Properties of Aqueous Systems at Elevated Temperatures and Pressures: Water, Steam, and Hydrothermal Solutions, Ed. by D. A. Palmer, R. Fernandez-Prini, and A. H. Harvey (Elsevier, Amsterdam, 2004), pp. 29–71.

    Google Scholar 

  45. R. J. Fernandez-Prini, H. R. Corti, and M. L. Japas, “Dilute Solutions Near Critical Conditions,” in High-Temperature Aqueous Solutions: Thermodynamic Properties (CRC Press, Boca Raton, 1992), Chap. 5, pp. 155–187.

    Google Scholar 

  46. J. E. Stuckey and C. H. Secoy, “Critical Temperatures and Densities of the SO3-H2O System,” J. Chem. Eng. Data 8, 386–388 (1963).

    Article  Google Scholar 

  47. W. L. Marshall and J. M. Simonson, “The (Liquid + Vapor) Critical-Temperature Curve for xD2O + (1 − x)H2O,” J. Chem. Thermodyn. 23, 613–616 (1991).

    Google Scholar 

  48. N. G. Polikhronidi, I. M. Abdulagatov, J. W. Magee, and G. V. Stepanov, “Isochoric Heat Capacity Measurements for an Equimolar Light and Heavy Water Mixture in the Near-Critical and Supercritical Regions,” Int. J. Thermophys. 24, 405–428 (2003).

    Article  Google Scholar 

  49. A. R. Bazaev, I. M. Abdulagatov, J. W. Magee, et al., PVT x-Measurements for H2O + D2O Mixtures in the Near-Critical and Supercritical Regions,” J. Supercritical Fluids 26, 115–128 (2003).

    Article  Google Scholar 

  50. H. Lentz and E. U. Franck, “Water-Argon System at Hight Pressures and Temperatures,” Ber. Bunsenges. Phys. Chem. 73, 28–35 (1960).

    Google Scholar 

  51. G. Wu, M. Heiling, H. Lentz, and E. U. Franck, “Phase Equilibria of Multicomponent Fluid Systems to High Pressures and Temperatures,” Ber. Bunsenges. Phys. Chem. 94, 24–35 (1990).

    Google Scholar 

  52. E. U. Franck, H. Lentz, and H. Welsch, “The System Water-Xenon at High Pressures and Temperatures,” Z. Phys. Chem. (N.F.) 93, 95–108 (1974).

    Google Scholar 

  53. H. Welsch, The Xenon-Water and Methane-Water Systems at High Pressures and Temperatures, PhD Thesis (Univ. Karlsruhe, 1973) [in German].

  54. J. De Swaan Arons and G. A. M. Diepen, “Gas-Gas Equilibria,” J. Chem. Phys. 44, 2322–2330 (1966).

    Article  Google Scholar 

  55. A. E. Mather R. J. Sadus, and E. U. Franck, “Phase Equilibria in Water + Krypton at Pressures from 31 MPa to 273 MPa and Temperatures from 610 K to 660 K and in Water + Neon from 45 MPa to 255 MPa and from 660 K to 700 K,” J. Chem. Thermodyn. 25, 771–779 (1993).

    Article  Google Scholar 

  56. N. G. Sretenskaja, R. J. Sadus, and E. U. Franck, “High-Pressure Phase Equilibria and Critical Curve of the Water-Helium System to 200 MPa and 723 K,” J. Phys. Chem. 99, 4273–4277 (1995).

    Article  Google Scholar 

  57. V. M. Prokhorov and D. S. Tsyklis, “Gas-Gas Equilibrium in the Nitrogen-Water System,” Zh. Fiz. Khim. 44, 2069–2070 (1970).

    Google Scholar 

  58. M. L. Japas and E. U. Franck, “High Pressure Phase Equilibria and PVT-Data of the Water-Nitrogen System to 673 K and 250 MPa,” Ber. Bunsenges. Phys. Chem. 89, 793–800 (1985).

    Google Scholar 

  59. T. M. Seward and E. U. Franck, “The System Hydrogen-Water up to 440°C and 2500 bar Pressure,” Ber. Bunsenges. Phys. Chem. 85, 2–7 (1981).

    Google Scholar 

  60. M. L. Japas and E. U. Franck, “High-Pressure Phase Equilibria and PVT-Data of the Water-Oxygen System Including Water-Air to 673 K and 250 MPa,” Ber. Bunsenges. Phys. Chem. 89, 1268–1275 (1985).

    Google Scholar 

  61. S. Takenouchi and G. C. Kennedy, “The Binary System H2O + CO2 at High Temperatures and Pressures,” Am. J. Sci. 262, 1055–1074 (1964).

    Google Scholar 

  62. G. Morrison, “Effect of Water on the Critical Points of Carbon Dioxide and Ethane,” J. Phys. Chem. 85, 759–761 (1981).

    Article  MathSciNet  Google Scholar 

  63. K. Tödheide and E.U. Franck, “Two-Phase Zone and Critical Curve in the Carbon Dioxide-Water System at Pressures of up to 3500 bar,” Z. Phys. Chem. 37, 387–401 (1963).

    Google Scholar 

  64. P. J. Smits, R. J. A. Smits, C. J. Peters, and J. de Swan Arons, “High-Pressure Phase Behavior of {xCF4 + (1 − x)H2O},” J. Chem. Thermodyn. 29, 23–30 (1997).

    Article  Google Scholar 

  65. W. L. Marshall and E. V. Jones, “Liquid-Vapor Critical Temperatures of Aqueous Electrolyte Solutions,” J. Inorg. Nucl. Chem. 36, 2313–2318 (1974).

    Article  Google Scholar 

  66. D. S. Tsyklis, L. R. Linshits, and N. P. Goryunova, “Phase Equilibria in the Ammonia-Water System,” Zh. Fiz. Khim. 39, 2978–2981 (1965).

    Google Scholar 

  67. C. L. Sassen, R. A. C. van Kwartel, H. J. van der Kool, and J. de Swaan Arons, “Vapor-Liquid Equilibria for the System Ammonia + Water up to the Critical Region,” J. Chem. Eng. Data 35, 140–144 (1990).

    Article  Google Scholar 

  68. S. S. Rizvi and A. Heidemann, “Liquid-Vapor Equilibria in the Ammonia-Water System,” J. Chem. Eng. Data 32, 183–191 (1987).

    Article  Google Scholar 

  69. W. L. Marshall and E. V. Jones, “Liquid-Vapor Critical Temperatures of Several Aqueous-Organic and Organic-Organic Solution Systems,” J. Inorg. Nucl. Chem. 36, 2319–2323 (1974).

    Article  Google Scholar 

  70. C. J. Wormald and T. K. Yerlett, “Molar Enthalpy Increments for (0.5 H2O + 0.5 CH3OH) at Temperatures up to 573.2 K and Pressures up to 13.0 MPa,” J. Chem. Thermodyn. 32, 97–105 (2000).

    Article  Google Scholar 

  71. J. Griswold and S. Y. Wong, “Phase Equilibria of the Acetone-Methanol-Water System from 100°C into the Critical Region,” Chem. Eng. Prog. Symp. Ser. 48, 18–34 (1952).

    Google Scholar 

  72. C. Xiao, H. Bianchi, and P. R. Tremaine, “Excess Molar Volumes and Densities of (Methanol + Water) at Temperatures between 323 K and 573 K and Pressures of 7.0 MPa and 13.5 MPa,” J. Chem. Thermodyn. 29, 261–286 (1997).

    Article  Google Scholar 

  73. N. G. Polikhronidi, I. M. Abdulagatov, G. V. Stepanov, and R. G. Batyrova, “Isochoric Heat Capacity Measurements for H2O + CH3OH mixture in the Near-Critical and Supercritical Regions,” Fluid Phase Equilib. 252, 33–46 (2007).

    Article  Google Scholar 

  74. A. R. Bazaev, I. M. Abdulagatov, J. W. Magee, et al., “PVTx-Measurements for H2O + Methanol Mixture in the Sub-Critical and Supercritical Regions,” Int. J. Thermophys. 25, 804–838 (2004).

    Article  Google Scholar 

  75. J. F. White, “Manufacture of Silica Aerogel — Description of Process and Heat Transfer Problems,” Trans. Amer. Inst. Chem. Eng. 38, 435–446 (1942).

    Google Scholar 

  76. F. Barr-David and B. F. Dodge, “Vapor-Liquid Equilibrium at High Pressures. The Systems Ethanol-Water and 2-Propanol-Water,” J. Chem. Eng. Data 4, 107–121 (1959).

    Article  Google Scholar 

  77. C. J. Wormald and M. D. Vine, “Molar Enthalpy Increments for (0.5 H2O + 0.5 C2H5OH) at Temperatures up to 573.2 K and Pressures up to 11.3 MPa,” J. Chem. Thermodyn. 32, 439–449 (2000).

    Article  Google Scholar 

  78. J. Griswold, J. D. Havey, and V. A. Klein, “Ethanol-Water System,” Ind. Eng. Chem. 35, 701–704 (1943).

    Article  Google Scholar 

  79. M. K. Alieva, PhD Thesis (Inst. of Physics, Baku, 1968).

  80. D. S. Tsiklis, A. I. Kulikova, and L. I. Shenderei, “Phase Equilibria in the System of Ethanol-Ethylene-Water at High Pressures and Temperatures,” Khim. Prom-st. 5, 401–406 (1960).

    Google Scholar 

  81. A. R. Bazaev, I. M. Abdulagatov, E. A. Bazaev, and A. A. Abdurashidova, “PVTx-Measurements of {(1 − x)H2O + xC2H5OH} Mixtures in the Near-Critical and Supercritical Regions,” J. Chem. Thermodyn. 39, 385–411 (2007).

    Article  Google Scholar 

  82. J. P. Kuenen and W. G. Robson, “Observation on Mixtures with Maximum and Minimum Vapor-Pressure,” Phil. Mag. 6, 116–132 (1902).

    Google Scholar 

  83. C. J. Rebert and W. B. Kay, “The Phase Behavior and Solubility Relations of the Benzene-Water System,” AIChE J. 5, 285–289 (1959).

    Article  Google Scholar 

  84. Z. Alwani and G. M. Schneider, “Flow under Pressure in a Stratified Liquid System. VI. Phase Equilibrium and Critical Phenomena in the Benzene-H2O System at Temperatures from 250 to 368°C and Pressures of up to 3700 bar,” Ber. Bunsenges. Phys. Chem. 71, 633–638 (1967).

    Google Scholar 

  85. Z. Alwani, Phase Equilibrium, Critical Behavior, and pVT-Data in Binary Mixtures of Water and Aromatic Hydrocarbons at Pressures of up to 3700 bar and Temperatures of up to 420°C, Ph. D. Thesis (Karlsruhe, 1969) [in German].

  86. R. G. Sultanov, V. G. Skripka, and A. Yu. Namiot, “Content of Water in Methane at High Temperatures and Pressures,” Gazov. Promyshl., No. 4, 6–8 (1971).

  87. V. M. Shmonov, R. J. Sadus, and E. U. Franck, “High Pressure Phase Equilibria and Supercritical pVT-Data of the Binary Water-Methane Mixture to 723 K and 200 MPa,” J. Phys. Chem. 97, 9054–9059 (1993).

    Article  Google Scholar 

  88. E. Brunner, “Fluid Mixtures at High Pressures. IX. Phase Separation and Critical Phenomena in 23 (n-Alkane + Water) Mixtures,” J. Chem. Thermodyn. 22, 335–353 (1990).

    Article  Google Scholar 

  89. A. Danneil, K. Tödheide, and E. U. Franck, “Vaporization Equilibriums and Critical Curves in the Systems Ethane/Water and n-Butane/Water at High Pressures,” Chem.-Ing.-Tech. 39, 816–822 (1967).

    Article  Google Scholar 

  90. Th. W. Loos, A. J. M. Wijen, and G. A. M. Diepen, “Phase Equilibria and Critical Phenomena in Liquid (Propane-Water) at High Pressures and Temperatures,” J. Chem. Thermodyn. 12, 193–204 (1980).

    Article  Google Scholar 

  91. M. Sanchez and H. Lentz, “Phase Equilibrium in the Water-Propylene and Water-Ethylene Systems at High Pressures and Temperatures,” High Temp. — High Press. 5, 689–699 (1973).

    Google Scholar 

  92. D. S. Tsiklis and V. Ya. Maslennikov, “Mutual Limited Solubility of Gases in the Water—Butane System,” Dokl. Akad. Nauk SSSR 157, 426–429 (1964).

    Google Scholar 

  93. T. Yiling, Th. M. Michelberger, and E. U. Franck, “High-Pressure Phase Equilibria and Critical Curves of (Water-n-Butane) and (Water-n-Hexane) at Temperatures to 700 K and Pressures to 300 MPa,” J. Chem. Thermodyn. 23, 105–112 (1991).

    Google Scholar 

  94. Th. W. De Loos, J. H. van Dorp, and R. N. Lichtenthaler, “Phase Equilibria and Critical Phenomena in Fluid (n-Alkane + Water) Systems at High Pressures and Temperatures,” Fluid Phase Equilib. 10, 279–287 (1983).

    Article  Google Scholar 

  95. Th. W. De Loos, W. G. Penders, and R. N. Lichtenthaler, “Phase Equilibria and Critical Phenomena in Fluid (n-Hexane + Water) at High Pressures and Temperatures,” J. Chem. Thermodyn. 14, 83–91 (1982).

    Article  Google Scholar 

  96. C. J. Rebert and K. E. Hayworth, “The Gas and Liquid Solubility Relations in Hydrocarbon-Water Systems,” AIChE J. 13, 118–121 (1967).

    Article  Google Scholar 

  97. K. Bröllos, K. H. Peter, and G. M. Schneider, “Fluid Mixture Systems under High Pressures. Phase Equilibria and Critical Phenomena in Binary Systems Cyclohexane-H2O, n-Heptane, Biphynil-H2O, and Benzene-H20 to 420°C and 3000 bar,” Ber. Bunsenges. Phys. Chem. 74, 682–686 (1970).

    Google Scholar 

  98. Q. Wang and K. Chao, “Vapor-Liquid and Liquid-Liquid Equilibria and Critical States of Water + n-Decane Mixtures,” Fluid Phase Equilib. 59, 207–215 (1990).

    Article  Google Scholar 

  99. E. Schröer, “Investigations of a Critical State. 1. Contribution into the Knowledge of Critical States of Water and Aqueous Solutions,” Z. Phys. Chem. 129, 79–109 (1927).

    Google Scholar 

  100. A. Ölander and H. Liander, “The Phase Diagram of Sodium Chloride and Steam above the Critical Point,” Acta Chem. Scand. 4, 1437–1445 (1950).

    Article  Google Scholar 

  101. S. Sourirajan and G. C. Kennedy, “The System H2O + NaCl at Elevated Temperatures and Pressures,” Amer. J. Sci. 260, 115–141 (1960).

    Google Scholar 

  102. W. L. Marshall, “Critical Curves of Aqueous Electrolytes Related to Ionization Behavior: New Temperatures for Sodium Chloride Solutions,” J. Chem. Soc. Faraday Trans. 86, 1807–1814 (1990).

    Article  Google Scholar 

  103. V. M. Fokeev, “An Approximate Method for Assessing the Critical Parameters of Deposit Water Samples,” Izv. Vyssh. Uchebn. Zaved., Ser. Geolog. Razv. 9, 96–102 (1966).

    Google Scholar 

  104. C. L. Knight and R. J. Bondar, “Synthetic Fluid Inclusions: IX. Critical PVTx-Properties of NaCl-H2O Solutions,” Geochim. Cosmochim. Acta 53, 3–8 (1989).

    Article  Google Scholar 

  105. M. A. Urusova, “Phase Equilibria in the Sodium Hydroxide-Water and Sodium Chloride-Water Systems at 35–550°C,” Zh. Neorg. Khim. 19, 828–833 (1974).

    Google Scholar 

  106. M. A. Urusova, “The Volumetric Properties of Sodium Chloride Aqueous Solutions at High Temperatures and Pressures,” Zh. Neorg. Khim. 16, 1717–1721 (1975).

    Google Scholar 

  107. I. Kh. Khaibullin and N. M. Borisov, “An Experimental Investigation into the Thermal Properties of the Aqueous and Vapor Solutions of Sodium and Potassium Chlorides at Phase Equilibrium,” Teplofiz. Vys. Temp. 4, 518–523 (1966).

    Google Scholar 

  108. R. J. Rosenbauer and J. L. Bischoff, “Pressure-Composition Relations for Coexisting Gases and Liquids and the Critical Points in the System NaCl-H2O at 450°C, 475°C, and 500°C,” Geochim. Cosmochim. Acta 51, 2349–2354 (1987).

    Article  Google Scholar 

  109. J. L. Bischoff and R. J. Rosenbauer, “Liquid-Vapor Relations in the Critical Regions of the System NaCl-H2O from 380 to 415°C: A Referred Determination in the Critical Point and Two-Phase Boundary of Seawater,” Geochim. Cosmochim. Acta 52, 2121–2126 (1988).

    Article  Google Scholar 

  110. J. L. Bischoff and K. S. Pitzer, “Liquid-Vapor Relations for the System NaCl-H2O: Summary of the PTx-Surface from 300 to 500°C,” Amer. J. Sci. 289, 217–248 (1989).

    Google Scholar 

  111. J. L. Bischoff, “Densities of Liquids and Vapors in Boiling NaCl-H2O Solutions: A PVTx-Summary from 300 to 500°C,” Amer. J.Sci. 291, 309–338 (1991).

    Google Scholar 

  112. “Measurements of Heat Capacity at Constant Volume for Aqueous Salt Solutions (H2O + NaCl, H2O + KCl, and H2O + NaOH) Near the Critical Point of Pure Water,” Fluid Phase Equilib. 143, 213–239 (1998).

  113. R. W. Potter, R. S. Babcock, and G. K. Czamanske, “An Investigation of the Critical Liquid-Vapor Properties of Dilute KCl Solutions,” J. Solution Chem. 5, 223–230 (1976).

    Article  Google Scholar 

  114. M. Dubois, A. Weisbrod, and A. Shtuka, “Experimental Determination of the Two-Phase (Liquid and Vapor) Region in Water-Alkali Chloride Binary Systems at 500°C and 600°C Using Synthetic Fluid Inclusions,” Chem. Geol. 115, 227–238 (1994).

    Article  Google Scholar 

  115. J. L. Bischoff, R. J. Rosenbauer, and R. O. Fournier, “The Generation of HCl in the System CaCl2-H2O: Vapor-Liquid Relations from 380 to 500°C,” Geochim. Cosmochim. Acta 60, 7–16 (1996).

    Article  Google Scholar 

  116. C. S. Oakes, “Critical and Supercritical Properties for 0.3 to 3.0 mol kg1 CaCl2(aq),” Geochim. Cosmochim. Acta 58, 2421–2431 (1994).

    Article  Google Scholar 

  117. C. S. Oakes, R. J. Bodnar, J. M. Simonson, and K. S. Pitzer, “CaCl2-H2O in the Supercritical and Two-Phase Ranges,” Int. J. Thermophys. 16, 485–492 (1995).

    Article  Google Scholar 

  118. G. C. Kennedy, “A Portion of the System Silica-Water,” Econ. Geol. 45, 629–653 (1950).

    Article  Google Scholar 

  119. W. L. Marshall, “Two-Liquid-Phase Boundaries and Critical Phenomena at 275-400°C for High-Temperature Aqueous Potassium Phosphate and Sodium Phosphate Solutions: Potential Applications for Steam Generators,” J. Chem. Eng. Data 175, 175–180 (1982).

    Article  Google Scholar 

  120. W. L. Marshall, C. E. Hall, and R. E. Mesmer, “The System Dipotassium Hydrogen Phosphate-Water at High Temperatures (100–400°C); Liquid-Liquid Immiscibility and Concentrated Solutions,” J. Inorg. Nucl. Chem. 43, 449–455 (1981).

    Article  Google Scholar 

  121. V. Vandana and A. S. Teja, “The Critical Temperatures and Densities of Acetic Acid-Water Mixtures,” Fluid Phase Equilib. 103, 113–118 (1995).

    Article  Google Scholar 

  122. S. P. Christensen and M. E. Paulaitis, “Phase Equilibria for Tetralin-Water and 1-Methylnaphtalene-Water Mixtures at Elevated Temperatures and Pressures,” Fluid Phase Equilib. 71, 63–83 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.I. Abdulagatov, G.V. Stepanov, I.M. Abdulagatov, 2008, published in Teploenergetika.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdulagatov, A.I., Stepanov, G.V. & Abdulagatov, I.M. Critical properties of aqueous solutions. Part 1: Experimental data. Therm. Eng. 55, 706–714 (2008). https://doi.org/10.1134/S0040601508080132

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601508080132

Keywords

Navigation