Skip to main content
Log in

Destruction of Co-EDTA Complexes by the Electrochemical Treatment of Water-Based Solutions

  • CHEMISTRY AND TECHNOLOGY OF RARE, TRACE, AND RADIOACTIVE ELEMENTS
  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

This work reports the main findings of the studies related to the problem of liquid radioactive waste utilization conducted at the Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, in 2013–2018. It has been shown that, during the electrochemical treatment of model aqueous solutions containing Co-EDTA, the complex is destroyed and cobalt precipitates in the form of oxides, hydroxides, and spinel of variable compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Ryabchikov, B.E., Ochistka zhidkikh radioaktivnykh otkhodov (Purification of Liquid Radioactive Wastes), Moscow: DeLi Print, 2008.

  2. Harada, S. and Yanagisawa, M., Evaluation of a method for removing cesium and reducing the volume of leaf litter from broad-leaved trees contaminated by the Fukushima Daiichi nuclear accident during the Great East Japan Earthquake, Chemosphere, 2017, vol. 172, pp. 516–524.

    Article  CAS  Google Scholar 

  3. Wu, Y., Zhang, X.X., Wei, Y.Z., and Mimura, H., Development of adsorption and solidification process for decontamination of Cs-contaminated radioactive water in Fukushima through silica-based AMP hybrid adsorbent, Sep. Purif. Technol., 2017, vol. 181, pp. 76–84.

    Article  CAS  Google Scholar 

  4. Jeon, C., Removal of cesium ions from aqueous solutions using immobilized nickel hexacyanoferrate-sericite beads in the batch and continuous processes, J. Ind. Eng. Chem. (Amsterdam, Neth.), 2016, vol. 40, pp. 93–98.

  5. Genevois, N., Villandier, N., Chaleix, V., Poli, E., Jauberty, L., and Gloaguen, V., Removal of cesium ion from contaminated water: Improvement of Douglas fir bark biosorption by a combination of nickel hexacyanoferrate impregnation and TEMPO oxidation, Ecol. Eng., 2017, vol. 100, pp. 186–193. https://doi.org/10.1016/j.ecoleng.2016.12.012

    Article  Google Scholar 

  6. Gordienko, P.S., Shabalin, I.A., Yarusova, S.B., Suponina, A.P., and Zhevtun, I.G., Sorption of cesium ions by nanostructured calcium aluminosilicates, Russ. J. Phys. Chem. A, 2016, vol. 90, no. 10, pp. 2022–2028. https://doi.org/10.1134/S0036024416100125

    Article  CAS  Google Scholar 

  7. Lieberman, R.N., Green, U., Segev, G., Polat, M., Mastai, Y., and Cohen, H., Coal fly ash as a potential fixation reagent for radioactive wastes, Fuel, 2015, vol. 153, pp. 437–444.

    Article  CAS  Google Scholar 

  8. Gasser, M.S., Mekhamer, H.S., and Abdel Rahman, R.O., Optimization of the utilization of Mg/Fe hydrotalcite like compounds in the removal of Sr(II) from aqueous solution, J. Environ. Chem. Eng., 2016, vol. 4, pp. 4619–4630.

    Article  CAS  Google Scholar 

  9. Ghaly, M., El-Dars, F.M.S.E., Hegazy, M.M., and Abdel Rahman, R.O., Evaluation of synthetic Birnessite utilization as a sorbent for cobalt and strontium removal from aqueous solution, Chem. Eng. J., 2016, vol. 284, pp. 1373–1385. https://doi.org/10.1016/j.cej.2015.09.025

    Article  CAS  Google Scholar 

  10. Yarusova, S.B., Gordienko, P.S., Krysenko, G.F., and Azarova, Yu.A., Sr2+ sorption by synthetic and technogenic silicate materials, Inorg. Mater., 2014, vol. 50, no. 6, pp. 599–605. https://doi.org/10.1134/S002016851406020X

    Article  CAS  Google Scholar 

  11. Dyatlova, N.M., Temkina, V.Ya., and Popov, K.I., Kompleksony i kompleksonaty metallov (Complexones and Complexonates of Metals), Moscow: Khimiya, 1988.

  12. Seliverstov, A.F., Lagunova, Yu.O., Milyutin, V.V., and Ershov, B.G., Recovery of 60Co from EDTA-containing aqueous solutions, Radiochemistry, 2013, vol. 55, no. 4, pp. 388–391. https://doi.org/10.1134/S1066362213040085

    Article  CAS  Google Scholar 

  13. Ku, Y., Wang, L.-S., and Shen, Y.-S., Decomposition of EDTA in aqueous solution by UV/H2O2 process, J. Hazard. Mater., 1998, vol. 60, pp. 41–55.

    Article  CAS  Google Scholar 

  14. Lee, H.-C., In, J.-H., Hwang, K.-Y., and Lee, C.-H., Decomposition of ethylenediaminetetraacetic acid by supercritical water oxidation, Ind. Eng. Chem. Res., 2004, vol. 43, no. 13, pp. 3223–3227. https://doi.org/10.1021/ie049952u

    Article  CAS  Google Scholar 

  15. Lin, Q., Pan, H., Yao, K., Pan, Y., and Long, W., Competitive removal of Cu–EDTA and Ni–EDTA via microwave-enhanced Fenton oxidation with hydroxide precipitation, Water Sci. Technol., 2015, vol. 72, no. 7, pp. 1184–1190. https://doi.org/10.2166/wst.2015.329

    Article  CAS  PubMed  Google Scholar 

  16. Liu, X., Fan, J.-H., Hao, Y., and Ma, L.-M., The degradation of EDTA by the bimetallic Fe–Cu/O2 system, Chem. Eng. J., 2014, vol. 250, pp. 354–365. https://doi.org/10.1016/j.cej.2014.04.028

    Article  CAS  Google Scholar 

  17. Gordienko, P.S., Dostovalov, V.A., and Efimenko, A.V., Mikrodugovoe oksidirovanie metallov i splavov (Microarc Oxidation of Metals and Alloys), Vladivostok: Dal’nevost. Fed. Univ., 2013.

  18. Gordienko, P.S., Zhevtun, I.G., Shabalin, I.A., and Yarusova, S.B., Study of the composition and thermal behavior of the products of electrolysis of aqueous solutions of the Co–EDTA chelate, Khim. Tekhnol., 2013, vol. 14, no. 11, pp. 693–698.

    Google Scholar 

  19. Li, D., Ding, Y., Wei, X., Xiao, Y., and Jiang, L., Cobalt-aluminum mixed oxides prepared from layered double hydroxides for the total oxidation of benzene, Appl. Catal., A, 2015, vol. 507, pp. 130–138. https://doi.org/10.1016/j.apcata.2015.09.038

  20. Deraz, N.M. and Fouda, M.M.G., Synthesis, structural, morphological properties of cobalt-aluminum nano-composite, Int. J. Electrochem. Sci., 2013, vol. 8, no. 2, pp. 2756–2767.

    CAS  Google Scholar 

  21. Gordienko, P.S., Zhevtun, I.G., Shabalin, I.A., Yarusova, S.B., and Dmitrieva, E.E., Electrochemical decomposition of chelate complex of ethylenediaminetetraacetic acid with cobalt, Theor. Found. Chem. Eng., 2015, vol. 49, pp. 786–789. https://doi.org/10.1134/S0040579515050073

    Article  CAS  Google Scholar 

  22. Gordienko, P.S., Zhevtun, I.G., Yarusova, S.B., Shabalin, I.A., Vasilenko, O.S., Yudakov, A.A., Paramonov, A.N., and Amelichkin, D.A., Effect of the salt background of solutions containing Co–EDTA on the electrochemical recovery of Co2+ ions, Ekol. Khim., 2015, vol. 24, no. 3, pp. 176–180.

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Education and Science of the Russian Federation (Decision no. 218, agreement no. 02.G25.31.0166 between the Far East Plant Zvezda and the Ministry of Education and Science of the Russian Federation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Zhevtun.

Additional information

Translated by D. Kharitonov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhevtun, I.G., Gordienko, P.S., Yarusova, S.B. et al. Destruction of Co-EDTA Complexes by the Electrochemical Treatment of Water-Based Solutions. Theor Found Chem Eng 54, 1090–1095 (2020). https://doi.org/10.1134/S0040579520050255

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579520050255

Keywords:

Navigation