Skip to main content
Log in

Heat Exchange under the Evaporation and Boiling of a Film Showering a Bundle of Horizontal Finned Tubes

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

An algorithm for calculating heat exchange in the course of evaporation and boiling of a film that showers a bundle of finned tubes is described and a comparison of calculated and experimental data is performed. The calculated parameters are in quite satisfactory agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Gogonin, I.I. and Kabov, O.A., Effect of the capillary retention of a liquid on heat transfer during condensation on ribbed tubes, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Tekh. Nauk, 1983, no. 8, p. 3.

  2. Bressler, R.J. and Wyatt, P.W., Surface wetting through capillary grooves, J. Heat Transfer, 1970, vol. 92, no. 2, p. 126.

    Article  Google Scholar 

  3. Fujta, J. and Tsatsui, M., Experimental and analytical study of evaporation heat transfer in falling films on horizontal tubes, Proc. 10th International Heat Transfer Conference, Brighton, 1994, vol. 6. p. 175.

  4. Parken, W.H., Fletcher, L.S., Sernas, V., Han, J.C., Heat transfer through falling film evaporation and boiling on horizontal tubes, J. Heat Transfer, 1990, vol. 112, no. 3, p. 744. https://doi.org/10.1115/1.2910449

    Article  CAS  Google Scholar 

  5. Gogonin, I.I., Heat exchange at vaporization and boiling of film spraying horizontal pipe bundle, Theor. Found. Chem. Eng., 2014, vol. 48, no. 1, pp. 96–103. https://doi.org/10.1134/S0040579513060043

    Article  CAS  Google Scholar 

  6. Gogonin, I.I., The dependence of boiling heat transfer on the properties and geometric parameters of heat-transfer wall, High Temp., 2006, vol. 44, no. 6, pp. 913–921. https://doi.org/10.1007/s10740-006-0110-3

    Article  CAS  Google Scholar 

  7. Nakoryakov, V.E. and Grigor’eva, N.I., Neizotermicheskaya absorbtsiya v termotransformatorakh (Nonisothermal Absorption in Thermotransformers), Novosibirsk: Nauka, 2010.

  8. Rogers, J.T., Laminar falling film flow and heat transfer characteristics on horizontal tubes, Can. J. Chem. Eng., 1981, vol. 59, no. 2, p. 213.

    Article  CAS  Google Scholar 

  9. Labuntsov, D.A., Approximate theory of heat transfer in developed nucleate boiling, Izv. Akad. Nauk SSSR, Energ. Transp., 1963, no. 1, p. 58.

Download references

Funding

This work was performed at the Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, with financial support from a program of the Fundamental Scientific Research of State Academies of Sciences for 2013–2020 (topic III.18.2.3. AAAA–17117030310025–3).

NOTATION

\(b = \left[ {1 + 10{{{\left( {\frac{{{{{\rho }}_{V}}}}{{{{{\rho }}_{L}} - {{{\rho }}_{V}}}}} \right)}}^{{{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-0em} 3}}}}} \right]\)

dimensionless complex

heat capacity of liquid and wall, J/(kg K)

\(D\)

diameter of tube or rod, m

\(\bar {D} = {D \mathord{\left/ {\vphantom {D {{{l}_{\sigma }}}}} \right. \kern-0em} {{{l}_{\sigma }}}}\)

dimensionless tube diameter;

\(G\)

showering density, kg/(m s) or m3/(m s)

H

liquid height in the interfinal zone, m

h

fin height, m

\(\bar {h}\)

dimensionless height

\({{K}_{t}} = \frac{{{{{\left( {{\text{r}}{{{\rho }}_{V}}} \right)}}^{2}}{{l}_{\sigma }}}}{{{{C}_{P}}{{T}_{S}}{{{\rho }}_{L}}{\sigma }}}\)

thermal similarity criterion

L

length, m

\({{l}_{\sigma }} = \sqrt {{{\sigma } \mathord{\left/ {\vphantom {{\sigma } {g\left( {{{{\rho }}_{L}} - {{{\rho }}_{V}}} \right)}}} \right. \kern-0em} {g\left( {{{{\rho }}_{L}} - {{{\rho }}_{V}}} \right)}}} ;\)\({{l}_{\nu }} = {{\left( {{{{{{\nu }}^{2}}} \mathord{\left/ {\vphantom {{{{{\nu }}^{2}}} g}} \right. \kern-0em} g}} \right)}^{{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-0em} 3}}}}\)

capillary and visco-gravitational constant, m

\(q\)

specific heat flux, W/m2

\({{R}_{Z}}\)

roughness height on the cooled wall, µm

\(\overline {{{R}_{Z}}} = {{{{R}_{Z}}} \mathord{\left/ {\vphantom {{{{R}_{Z}}} {{{l}_{\nu }}}}} \right. \kern-0em} {{{l}_{\nu }}}}\)

dimensionless roughness

\(r\)

latent heat of vaporization, J/kg

\({{T}_{S}}\)

saturation temperature, K

\({{t}_{S}}\)

saturation temperature, °C

\(y\)

coordinate, m

\({{{\alpha }}_{0}},\)\({{{\alpha }}_{d}},\)\({\bar {\alpha }}\)

boiling heat transfer coefficients in the initial part of the thermal boundary layer under evaporation; average value according to (6), W/(m2 K)

\({\delta },\)\({{{\delta }}_{0}}\)

film thickness and residual film thickness, m

\({\bar {\delta }}\) = \({{\delta } \mathord{\left/ {\vphantom {{\delta } {{{l}_{{v}}}}}} \right. \kern-0em} {{{l}_{{v}}}}}\)

dimensionless film thickness, m

\({\lambda },\)\({{{\lambda }}_{W}}\)

thermal conductivity of the liquid and cooled wall, W/(m2 K)

\(\frac{{{\lambda }C{\rho }}}{{{{{\lambda }}_{W}}{{C}_{W}}{{{\rho }}_{W}}}}\)

ratio between the physical properties of the liquid and the physical properties of the cooled wall

\({\mu }{\text{,}}\)\({{{\mu }}_{{\text{T}}}}\)

dynamic and turbulent viscosity, Pa s

ν

kinematic viscosity, m2/s

\({{{\rho }}_{L}},\)\({{{\rho }}_{V}},\)\({{{\rho }}_{W}}\)

density of liquid, vapor and cooled wall, kg/m3

\({\text{Ga}}\) = \(\frac{{g{{D}^{3}}}}{{{{{\nu }}^{2}}}}\)

Galileo criterion

\({\rm N}{\text{u}}_{0}^{ * }\) = \({{{{\alpha }_{0}}{{l}_{\sigma }}} \mathord{\left/ {\vphantom {{{{\alpha }_{0}}{{l}_{\sigma }}} \lambda }} \right. \kern-0em} \lambda },\)\({\rm N}{\text{u*}}\) = \({{\alpha {{l}_{\nu }}} \mathord{\left/ {\vphantom {{\alpha {{l}_{\nu }}} \lambda }} \right. \kern-0em} \lambda }\)

Nusselt numbers constructed according to the capillary and the visco-gravitational constant

\(\Pr = \frac{\nu }{a}\)

Prandtl number

\(\operatorname{Re} = {G \mathord{\left/ {\vphantom {G {2\mu }}} \right. \kern-0em} {2\mu }}\)

Reynolds number of a film for a bundle of horizontal tubes

\({\text{R}}{{{\text{e}}}_{ * }}\) = \(\frac{{q{{l}_{\sigma }}}}{{r\rho \nu }}\)

Reynolds number according to vaporization rate

SUBSCRIPTS AND SUPERSCRIPTS

0

boiling

d

initial part

L

liquid

S

saturation

T

turbulent

V

vapor

W

wall

σ

film

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Gogonin.

Additional information

Translated by O. Polyakov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogonin, I.I. Heat Exchange under the Evaporation and Boiling of a Film Showering a Bundle of Horizontal Finned Tubes. Theor Found Chem Eng 54, 641–646 (2020). https://doi.org/10.1134/S0040579520030033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579520030033

Keywords:

Navigation