Skip to main content

Low-Finned Tubes for Condensation

  • Chapter
  • First Online:
Innovative Heat Exchangers

Abstract

Low-finned tubes offer a wide potential for applications in heat exchangers where condensation occurs on the outside of the heat exchanger tubes. Typically, the fin height and the inter-fin spacing is smaller than 1 mm. This leads to an increased surface area, which is usually increased by a factor of 2–5. Additionally to this, fluid dynamic effects come into play, which reduce the condensate layer on the tube and thereby increase the heat transfer coefficient, too. With horizontally arranged smooth tubes a bundle effect can be seen since the condensate layer increases from row to row. This negative effect can be reduced with low-finned tubes where the condensate is withdrawn due to capillary forces and higher heat transfer coefficients can be observed. Pure component condensation with free convection can be described with the theory derived by Nusselt (1916) for smooth tubes. For low-finned tubes a wide range of experimental data is presented along with a newly developed model to predict the outer heat transfer coefficients. The condensation of mixtures differs from the condensation of pure substances, since the thermal resistance in the vapour phase cannot be neglected. Thereby, the heat transfer coefficients are lowered for both smooth and low-finned tubes. An innovative model, which includes the effect of the mole fraction of the mixture components on the heat transfer, is presented. As compared to the well-known film model the new model is based on a fit of the thermodynamic correction factor and can describe the experimentally measured heat transfer coefficients much better.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The tubes listed in this table were investigated in various publications and are mentioned in this article. Nevertheless, this table does of course not show the whole variety nor all possible structures and dimensions of low-finned tubes. It rather shall give a short overview to get a feeling for the values.

  2. 2.

    In tube bundles the row on top has the number 1, the row below the number 2 and so on. Thus, a high row number means this row is somewhere at the bottom of the bundle.

  3. 3.

    In the original publication the factor in the equation is not 0.728 but 0.725 due to the graphical integration Nusselt applied. With numerical integration the factor of 0.728 is obtained and used in today’s textbooks (Baehr and Stephan 2011).

  4. 4.

    Both publications do not actually write that \(\varepsilon_{{\dot{q}}}\) is independent of \(\dot{q}\), but in case of Briggs and Rose (1994) their equation for ε is independent of the heat flux and in case of Kumar et al. (2002a) the dependency between the outer heat transfer coefficient and the heat flux in their model is actually fixed to be the same as in Nusselt’s Theory.

Abbreviations

a :

Thermal diffusivity (m2/s)

A :

Area (m2)

\(c_{p}\) :

Specific heat capacity (J/kg K)

C:

Constant in Eq. (11)

d :

Diameter (mm)

g :

Gravity constant (m/s2)

h :

Fin height (mm)

\(\Delta h\) :

Specific enthalpy difference (kJ/kg)

\(\Delta h_{V}\) :

Specific enthalpy of evaporation (kJ/kg)

k :

Overall heat transfer coefficient (W/m2 K)

L :

Length (m)

m :

Exponent Eq. (4)

\(\dot{m}\) :

Mass flux (kg/(m2 s))

n :

Number

p :

Pressure (bar)

\(\dot{q}\) :

Heat flux (kW/m2)

\(\dot{Q}\) :

Heat (kW)

r :

Radius (mm)

\(R_{\text{th}}\) :

Thermal resistance (K/W)

s :

Fin spacing (mm)

t :

Fin thickness (mm)

T :

Temperature (°C, K)

\(T_{\theta }\) :

Temperature at the angle \(\theta\) (°C, K)

u :

Velocity (m/s)

x :

Liquid mole fraction

y :

Vapour mole fraction

Z :

Thermodynamic factor

\(\alpha\) :

Heat transfer coefficient (W/m2 K)

\(\beta\) :

Inclination angle of fin (°)

\(\Delta\) :

Difference

\(\Delta T_{\text{outside}}\) :

Temperature difference between vapour and wall (K)

\(\varepsilon\) :

Enhancement factor

\(\eta\) :

Dynamic viscosity (Pa s)

\(\lambda\) :

Thermal conductivity (W/m K)

\(\varrho\) :

Density (kg/m3)

\(\sigma\) :

Surface tension (N/m)

\(\phi_{f}\) :

Flooding angle (°)

*:

Equilibrium

\({\blacksquare }\) :

Ackermann-corrected

-:

Mean

1:

Component 1, lighter boiling component, row 1

b :

Boiling

Bulk :

Bulk

c :

Condensing

cond :

Condensate

CW :

Cooling water

eq :

Equilibrium

experiment :

Measured, retrieved by experiment

fin :

Fin

fin root :

Fin root

fin spacing :

Fin spacing

fin tip :

Fin tip

flooded :

Flooded

G :

Vapour phase

inside :

Inside

lft :

Low-finned tube

model :

Calculated with a theoretical model

outside :

Outside

Ph :

Phase boundary

\(\dot{q}\) :

At constant heat flux

root :

Root

s :

At saturation

st :

Smooth tube

\(\Delta T\) :

At constant temperature difference

tip :

Tip

tot :

Total

tube :

Tube

\(u_{v}\) :

At constant gas flow velocity

v :

Vapour, vapour flow

vapour :

Vapour phase

W :

Wall

Bo :

Bond number

Cn :

Condensation number

Ja :

Jakob number

Pr :

Prandtl number

Re :

Reynolds number

Ro :

Tube number

References

  • Adamek T (1985) Rechenmodell der Filmkondensation an engberippten Kondensatorrohren. Wärme- und Stoffübertragung 19:145

    Article  Google Scholar 

  • Al-Badri AR, Gebauer T, Leipertz A, Fröba AP (2013) Element by element prediction model of condensation heat transfer on a horizontal integral finned tube. Int J Heat Mass Transf 62:463

    Article  Google Scholar 

  • Baehr HD, Stephan K (2011) Heat and mass transfer (3rd ed). Springer, Berlin

    Google Scholar 

  • Belghazi M, Bontemps A, Signe JC, Marvillet C (2001) Condensation heat transfer of a pure fluid and binary mixture outside a bundle of smooth horizontal tubes. Comparison of experimental results and a classical model. Int J Refrig 24:841

    Article  Google Scholar 

  • Belghazi M, Bontemps A, Marvillet C (2002) Filmwise condensation of a pure fluid and a binary mixture in a bundle of enhanced surface tubes. Int J Therm Sci 41:631

    Article  Google Scholar 

  • Belghazi M, Bontemps A, Marvillet C (2003) Experimental study and modelling of heat transfer during condensation of pure fluid and binary mixture on a bundle of horizontal finned tubes. Int J Refrig 26:214

    Article  Google Scholar 

  • Bella B, Cavallini A, Longo GA Rossetto L (1993) Pure vapour condensation of refrigerants 11 and 113 on a horizontal integral finned tube at high vapour velocity. J Enhanced Heat Transfer 1:77

    Google Scholar 

  • Blaß E (1973) Die Kondensation von binären Dampfgemischen. Chem Ing Tec 45:865

    Article  Google Scholar 

  • Briggs A (2008) Theoretical and experimental studies in shell-side condensation. In: HEFAT 2008, Paper number: K2

    Google Scholar 

  • Briggs A, Rose JW (1994) Effect of fin efficiency on a model for condensation heat transfer on a horizontal, integral-fin tube. Int J Heat Mass Transf 37:457

    Article  Google Scholar 

  • Briggs A, Rose JW (1995) Condensation of refrigerants on horizontal, integral-fin tubes: performance predictions. In: Proceedings of the ASME-JSME thermal engineering joint conference vol 2, p 431

    Google Scholar 

  • Briggs A, Rose JW (1999) An evaluation of models for condensation heat transfer on low-finned tubes. Enhanced Heat Transfer 6:51

    Article  Google Scholar 

  • Briggs A, Rose JW (2007) Condensation on integral-fin tubes with special reference to effects of vapour velocity. In: Proceedings of 5th Baltic heat transfer conference, vol 1, p 96

    Google Scholar 

  • Browne MW, Bansal PK (1999) An overview of condensation heat transfer on horizontal tube bundles. Appl Therm Eng 19:565

    Google Scholar 

  • Büchner A (2016) Kondensation von binären Gemischen an horizontalen Rohren. Dissertation, Technische Universität München, München

    Google Scholar 

  • Büchner A, Reif A, Rehfeldt S, Klein H (2015a) Problematik einheitlicher Betrachtungen des Wärmedurchgangs bei der Kondensation an strukturierten Rohren. Chem Ing Tec 87:301

    Article  Google Scholar 

  • Büchner A, Reif A, Rehfeldt S, Klein H (2015b) Untersuchung der Kondensation von Reinstoffen an einem horizontalen berippten Rohrbündel. Chem Ing Tec 87:270

    Article  Google Scholar 

  • Cavallini A, Doretti L, Longo G (1994) Experimental investigations on condensate flow patterns on enhanced surfaces. In: Proceedings of the international Institute of Refrigeration Meeting, p 627

    Google Scholar 

  • Cavallini A, Doretti L, Longo GA, Rossetto L (1996) A new model for forced-convection condensation on integral-fin tubes. J Heat Transfer 118:689

    Article  Google Scholar 

  • Cheng WY, Wang CC (1994) Condensation of R-134a on enhanced tubes. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA, US

    Google Scholar 

  • Colburn AP, Drew TB (1937) The condensation of mixed vapors. In: Transactions of the American Institute of Chemical Engineers, vol 33, p 197

    Google Scholar 

  • Fitzgerald CL, Briggs A, Rose JW, Wang HS (2012) Effect of vapour velocity on condensate retention between fins during condensation on low-finned tubes. Int J Heat Mass Transf 55:1412

    Article  Google Scholar 

  • Gebauer T, Al-Badri AR, Gotterbarm A, El-Hajal J, Leipertz A, Fröba AP (2013) Condensation heat transfer on single horizontal smooth and finned tubes and tube bundles for R134a and propane. Int J Heat Mass Transf 56:516

    Google Scholar 

  • Gregorig R (1954) Hautkondensation an feingewellten Oberflächen bei Berücksichtigung der Oberflächenspannungen. Zeitschrift für angewandte mathematische Physik 5:36

    Article  MATH  Google Scholar 

  • Gstoehl D, Thome JR (2006) Film condensation of R-134a on tube arrays with plain and enhanced surfaces: Part II—empirical prediction of inundation effects. J Heat Transfer 128:33

    Article  Google Scholar 

  • Honda H, Nozu S (1987) A prediction method for heat transfer during film condensation on horizontal low integral-fin tubes. J Heat Transfer 109:218

    Article  Google Scholar 

  • Honda H, Nozu S, Mitsumori K (1983) Augmentation of condensation on finned tubes by attaching a porous drainage plate. In: Proceedings of the ASME-JSME thermal engineering joint conference, vol 3, p 289

    Google Scholar 

  • Honda H, Nozu S, Takeda Y (1987a) Flow characteristics of condensate on a vertical column of horizontal low finned tubes. Int J Bull JSME 30:2051

    Google Scholar 

  • Honda H, Uchima B, Nozu S (1987b) A generalized prediction method for heat transfer during film condensation on a horizontal low-finned tube. In: Proceedings of the ASME-JSME thermal engineering joint conference, vol 4, p 385

    Google Scholar 

  • Honda H, Nozu S, Takeda Y (1989) A theoretical model of film condensation in a bundle of horizontal low finned tubes. J Heat Transfer 111:525

    Article  Google Scholar 

  • Ji WT, Zhao CY, Zhang DC, Li ZY, He YL, Tao WQ (2014) Condensation of R134a outside single horizontal titanium, cupronickel (B10 and B30), stainless steel and copper tubes. Int J Heat Mass Transf 77:194

    Article  Google Scholar 

  • Jung D, Song K, Kim K, An K (2003) Condensation heat transfer coefficients of halogenated binary refrigerant mixtures on a smooth tube. Int J Refrig 26:795

    Article  Google Scholar 

  • Kananeh AB, Rausch MH, Fröba AP, Leipertz A (2006) Experimental study of dropwise condensation on plasma-ion implanted stainless steel tubes. Int J Heat Mass Transf 49:5018

    Article  MATH  Google Scholar 

  • Katz DL, Geist JM (1948) Condensation on six finned tubes in a vertical row. Transactions of ASME 70:907

    Google Scholar 

  • Kern DQ (1958) Mathematical development of tube loading in horizontal condensers. AIChE J 4:157

    Article  Google Scholar 

  • Krishna R, Standart GL (1976) A multicomponent film model incorporating a general matrix method of solution to the Maxwell-Stefan equations. AIChE J 22:383

    Article  Google Scholar 

  • Kumar R, Varma HK, Mohanty B, Agrawal KN (2002a) Augmentation of heat transfer during filmwise condensation of steam and R-134a over single horizontal finned tubes. Int J Heat Mass Transf 45:201

    Article  Google Scholar 

  • Kumar R, Varma HK, Mohanty B, Agrawal KN (2002b) Prediction of heat transfer coefficient during condensation of water and R-134a on single horizontal integral-fin tubes. Int J Refrig 25:111

    Article  Google Scholar 

  • Marto PJ (1988) An evaluation of film condensation on horizontal integral-fin tubes. J Heat Transfer 110:1287

    Article  Google Scholar 

  • Marto PJ, Zebrowski D, Wanniarachichi AS, Rose JW (1988) Film condensation of R-113 on horizontal finned tubes. ASME symposium, HTD-96. In: Proceedings of the 1988 national heat transfer conference, vol 2, pp 583–592

    Google Scholar 

  • Marto PJ, Zebrowski D, Wanniarachchi AS, Rose JW (1990) An experimental study of R-113 film condensation on horizontal integral-fin tubes. J Heat Transfer 112:758

    Article  Google Scholar 

  • Masuda H, Rose JW (1985) An experimental study of condensation of refrigerant 113 on low integral-fin tubes. In: Proceedings of the international symposium on heat transfer, vol 2, p 480

    Google Scholar 

  • Masuda H, Rose JW (1988) Condensation of ethylene glycol on horizontal integral-fin tubes. J Heat Transfer 110:1019

    Article  Google Scholar 

  • Mitrovic J (1986) Influence of tube spacing and flow rate on heat transfer from a horizontal tube to a falling liquid film. In: Proceedings of the 8th international heat transfer conference, vol 4, p 1949

    Google Scholar 

  • Mitrovic J (1999) Condensation of pure refrigerants R12, R134a and their mixtures on a horizontal tube with capillary structure: an experimental study. Forsch Ingenieurwes 64:345

    Article  Google Scholar 

  • Mitrovic J, Gneiting R (1996) Kondensation von Dampfgemischen—Teil 1. Forsch Ingenieurwes 62:1

    Article  Google Scholar 

  • Murase T, Wang HS, Rose JW (2006) Effect of inundation for condensation of steam on smooth and enhanced condenser tubes. Int J Heat Mass Transf 49:3180

    Article  Google Scholar 

  • Murase T, Wang HS, Rose JW (2007) Marangoni condensation of steam–ethanol mixtures on a horizontal tube. Int J Heat Mass Transf 50:3774

    Article  Google Scholar 

  • Murata K, Hashizume K (1992) Prediction of condensation heat transfer coefficient in horizontal integral-fin tube bundles. Exp Heat Transfer Int J 5:115

    Article  Google Scholar 

  • Namasivayam S, Briggs A (2004) Effect of vapour velocity on condensation of atmospheric pressure steam on integral-fin tubes. Appl Therm Eng 24:1353

    Article  Google Scholar 

  • National Institute of Standards and Technology (2016) NIST Chemistry WebBook, NIST Standard Reference Database Number 69. (http://webbook.nist.gov), Gaithersburg MD

  • Nusselt W (1916) Die Oberflächenkondensation des Wasserdampfes. Z Ver Dtsch Ing 60:541, 60:569

    Google Scholar 

  • Perry R, Green D (1997) Perry’s chemical engineers’ handbook (7th ed). McGraw-Hill, New York

    Google Scholar 

  • Philpott C, Deans J (2004) The enhancement of steam condensation heat transfer in a horizontal shell and tube condenser by addition of ammonia. Int J Heat Mass Transf 47:3683

    Article  Google Scholar 

  • Reif A (2016) Kondensation von Reinstoffen an horizontalen Rohren und Rohrbündeln. Dissertation, Technische Universität München, München

    Google Scholar 

  • Reif A, Büchner A, Rehfeldt S, Klein H (2017) Outer heat transfer coefficient for condensation of pure components on single horizontal low-finned tubes. Heat and Mass Transfer, https://doi.org/10.1007/s00231-017-2184-3

  • Rose JW (1994) An approximate equation for the vapour-side heat-transfer coefficient for condensation on low-finned tubes. Int J Heat Mass Transf 37:865

    Article  MATH  Google Scholar 

  • Rose JW (2004) Surface tension effects and enhancement of condensation heat transfer. Chem Eng Res Des 82:419

    Article  Google Scholar 

  • Rudy TM, Webb RL (1983) Theoretical model for condensation on horizontal integral-fin tubes. In: Heat transfer conference AIChE symposium series, vol 79, p 11

    Google Scholar 

  • Silver L (1947) Gas cooling with aqueous condensation. Trans Inst Chem Eng 25:30

    Google Scholar 

  • VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (2006) VDI Wärmeatlas (10th ed), Section Jb: Filmkondensation von binären Gemischen mit und ohne Inertgas (D. Fullarton, E.-U. Schlünder). Springer, Berlin

    Google Scholar 

  • VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (2013) VDI Wärmeatlas (11th ed), Chapter O: Konstruktion von Wärmeübertragern (P. Wolf, G. Kirchner). Springer, Berlin

    Google Scholar 

  • Wanniarachichi AS, Marto PJ, Rose JW (1985) Film condensation of steam on horizontal finned tubes: effect of fin spacing, thickness and height. Multiphase flow and heat transfer, ASME HTD-47, 93

    Google Scholar 

  • Webb RL (1988) Enhancement of film condensation. Int Commun Heat Mass Transfer 15:475

    Article  Google Scholar 

  • Webb R, Murawski CG (1990) Row effect for R-11 condensation on enhanced tubes. J Heat Transfer 112:768

    Article  Google Scholar 

  • Webb DR, Sardesai RG (1981) Verification of multicomponent mass transfer models for condensation inside a vertical tube. Int J Multiph Flow 7:507

    Article  Google Scholar 

  • Webb DR, Fahrner M, Schwaab R (1996) The relationship between the Colburn and Silver methods of condenser design. Int J Heat Mass Transf 39:3147

    Article  Google Scholar 

  • NIST—NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP)

    Google Scholar 

  • Wieland-Werke AG Niedrigberippte Rohre GEWA-K, GEWA-KS. Produktkatalog

    Google Scholar 

  • Yau KK, Cooper JR, Rose JW (1985) Effect of fin spacing on the performance of integral-fin condenser tubes. J Heat Transfer 107:377

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Klein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Klein, H., Büchner, A. (2018). Low-Finned Tubes for Condensation. In: Bart, HJ., Scholl, S. (eds) Innovative Heat Exchangers. Springer, Cham. https://doi.org/10.1007/978-3-319-71641-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71641-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71639-8

  • Online ISBN: 978-3-319-71641-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics