Skip to main content
Log in

Integrated Optimization Strategies for Dynamic Process Operations

  • American-Russian Chemical Engineering Scientific School “Modeling and Optimization of Chemical Engineering Processes and Systems” May 23–25, 2016 (Kazan National Research Technological University)
  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Process systems engineering faces increasing demands and opportunities for better process modeling and optimization strategies, particularly in the area of dynamic operations. Modern optimization strategies for dynamic optimization trace their inception to the groundbreaking work Pontryagin and his coworkers, starting 60 years ago. Since then the application of large-scale non-linear programming strategies has extended their discoveries to deal with challenging real-world process optimization problems. This study discusses the evolution of dynamic optimization strategies and how they have impacted the optimal design and operation of chemical processes. We demonstrate the effectiveness of dynamic optimization on three case studies for real-world reactive processes. In the first case, we consider the optimal design of runaway reactors, where simulation models may lead to unbounded profiles for many choices of design and operating conditions. As a result, optimization based on repeated simulations typically fails, and a simultaneous, equationbased approach must be applied. Next we consider optimal operating policies for grade transitions in polymer processes. Modeled as an optimal control problem, we demonstrate how product specifications lead to multistage formulations that greatly improve process performance and reduce waste. Third, we consider an optimization strategy for the integration of scheduling and dynamic process operation for general continuous/batch processes. The method introduces a discrete time formulation for simultaneous optimization of scheduling and operating decisions. For all of these cases we provide a summary of directions and challenges for future integration of these tasks and extensions in optimization formulations and strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AIMMS. Advanced Interactive Multidimensional Modeling System. http://aimms.com; https://en.wikipedia. org/wiki/AIMMS. Accessed February 22, 2017.

  2. Arrieta-Camacho, J.J. and Biegler, L.T., Real time optimal guidance of low-thrust spacecraft: An application of nonlinear model predictive control, Ann. N. Y. Acad. Sci., 2006, vol. 1065, p.174.

    Article  Google Scholar 

  3. Ascher, U.M. and Petzold, L.R., Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, Philadelphia, Pa.: SIAM, 1998.

    Book  Google Scholar 

  4. Barton, P.I., Allgor, R.J., Feehery, W.F., and Galan, S., Dynamic optimization in a discontinuous world, Ind. Eng. Chem. Res., 1998, vol. 37, p.966.

    Article  CAS  Google Scholar 

  5. Betts, J., Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, SIAM Series on Advances in Design and Control, vol. 19, Philadelphia, Pa.: SIAM, 2010.

  6. Betts, J.T. and Huffman, W.P., Application of sparse nonlinear programming to trajectory optimization, Dyn. Cont., 1992, vol. 15, p.198.

    Article  Google Scholar 

  7. Betts, J.T. and Campbell, S.L., Discretize Then Optimize. M&CT-TECH-03-01 Technical Report, The Boeing Company, 2003.

    Google Scholar 

  8. Bhatia, T. and Biegler, L.T., Dynamic optimization in the design and scheduling of multiproduct batch plants, Ind. Eng. Chem. Res., 1996, vol. 35, p. 2234.

    Article  CAS  Google Scholar 

  9. Biegler, L.T., Nonlinear Programming: Concepts, Algorithms and Applications to Chemical Processes, Philadelphia, Pa.: SIAM, 2010.

    Book  Google Scholar 

  10. Biegler, L.T., Nonlinear programming strategies for dynamic chemical process optimization, Theor. Found. Chem. Eng., 2014, vol. 48, no. 5, p.486.

    Article  Google Scholar 

  11. Bliss, G.A., Lectures of the Calculus of Variations, Chicago: Univ. of Chicago Press, 1946.

    Google Scholar 

  12. Bock, H.G., Numerical treatment of inverse problem in differential and integral equations, in Recent Advances in Parameter Identification Techniques for O.D.E., Heidelberg: Springer, 1983.

    Google Scholar 

  13. Bock, H.G. and Plitt, K.J., A multiple shooting algorithm for direct solution of optimal control problems, in Proc. 9th IFAC World Congress, Budapest, 1984.

    Google Scholar 

  14. Boltyanskii, Y., Gamkrelidze, R., and Pontryagin, L.S., On the theory of optimal processes, Proc. USSR Acad. Sci., 1956, vol.110.

  15. Brooke, A., Kendrick, D., Meeraus, A., and Raman, R., GAMS–User’s Guide, 1998. http://www.gams.com. Accessed February 22, 2017.

    Google Scholar 

  16. Bryson, A.E. and Ho, Y.C., Applied Optimal Control, New York: Hemisphere, 1975.

    Google Scholar 

  17. Büskens, C. and Maurer, H., Real-time control of an industrial robot, Online Optimization of Large Systems, Grötschel, M., Krumke, S., and Rambau, J., Eds., Berlin: Springer, 2001, p.57.

    Chapter  Google Scholar 

  18. Byrd, R.H., Gilbert, J.C., and Nocedal, J., A trust region method based on interior point techniques for nonlinear programming, Math. Prog., 2000, vol. 89, p.149.

    Article  Google Scholar 

  19. Cervantes, A.M. and Biegler, L.T., Optimization strategies for dynamic systems, Encyclopedia of Optimization, Floudas, C. and Pardalos, P., Eds., Dordrecht: Kluwer Academic, 2000.

    Google Scholar 

  20. Cervantes, A.M., Wächter, A., Tutuncu, R., and Biegler, L.T., A reduced space interior point strategy for optimization of differential algebraic systems, Comput. Chem. Eng., 2000, vol. 24, p.39.

    Article  CAS  Google Scholar 

  21. Chen, W. and Biegler, L.T., Nested direct transcription optimization for singular optimal control problems, AIChE J., 2016, vol. 62, pp. 3611–3627. doi 10.1002/aic.15272

    Article  CAS  Google Scholar 

  22. Courant, R. and Hilbert, D., Methods of Mathematical Physics, New York: Interscience, 1953.

    Google Scholar 

  23. Cuthrell, J.E. and Biegler, L.T., Simultaneous optimization and solution methods for batch reactor control profiles, Comput. Chem. Eng., 1989, vol. 13, p.49.

    Article  CAS  Google Scholar 

  24. Drud, A., CONOPT–A large scale GRG code, ORSA Journal on Computing, 1994, vol. 6, p.207.

    Article  Google Scholar 

  25. Flores-Tlacuahuac, A., Biegler, L.T., and Saldivar-Guerra, E., Dynamic optimization of HIPS open-loop unstable polymerization reactors, Ind. Eng. Chem. Res., 2005, vol. 44, no. 8, p. 2659.

    Article  CAS  Google Scholar 

  26. Fourer, R., Gay, D.M., and Kernighan, B.W., AMPL: A Modeling Language for Mathematical Programming, Brooks: Duxbury, 2002.

    Google Scholar 

  27. Grossmann, I.E. and Floudas, C.A., Active constraint strategy for flexibility analysis in chemical process, Comput. Chem. Eng., 1987, vol. 11, p.675.

    Article  CAS  Google Scholar 

  28. Hager, W.W., Runge-Kutta methods in optimal control and the transformed adjoint system, Numer. Math., 2000, vol. 87, p.247.

    Article  Google Scholar 

  29. Harjunkoski, I., Maravelias, C.T., Bongers, P., Castro, P.M., Engell, S., Grossmann, I.E., Hooker, J., Mndez, C.A., Sand, G., and Wassick, J., Scope for industrial applications of production scheduling models and solution methods, Comput. Chem. Eng., 2014, vol. 62, p.161.

    Article  CAS  Google Scholar 

  30. Hart, W., Laird, C., Watson, J.-P., and Woodruff, D.L., Pyomo: Optimization Modeling in Python, Berlin: Springer, 2012.

    Book  Google Scholar 

  31. Kameswaran, S. and Biegler, L.T., Convergence rates for direct transcription of optimal control problems with final-time equality constraints using collocation at Radau points, in Proc. 2006 American Control Conference, 2006, p.165.

    Google Scholar 

  32. Kameswaran, S. and Biegler, L.T., Convergence rates for direct transcription of optimal control problems using collocation at Radau points, Computational Optimization and Applications, 2008, vol. 41, no. 1, p.81.

    Article  Google Scholar 

  33. Leineweber, D.B., Efficient Reduced SQP Methods for the Optimization of Chemical Processes Described by Large Sparse DAE Models, Heidelberg: Univ. of Heidelberg, 1999.

    Google Scholar 

  34. Maravelias, C.T., General framework and modeling approach classification for chemical production scheduling, AIChE J., 2012, vol. 58, p. 1812.

    Article  CAS  Google Scholar 

  35. Méndez, C.A., Cerda, J., Grossmann, I.E., Harjunkoski, I., and Fahl, M., State-of-the-art review of optimization methods for short-term scheduling of batch processes, Comput. Chem. Eng., 2006, vol. 30, p.913.

    Article  Google Scholar 

  36. Nie, Y., Biegler, L.T., Villa, C.M., and Wassick, J.M., Reactor modeling and recipe optimization of polyether polyol processes: Polypropylene glycol, AIChE J., 2013, vol. 59, no. 7, p. 2515.

    Article  CAS  Google Scholar 

  37. Nie, Y., Biegler, L.T., Villa, C.M., and Wassick, J.M., Extended discrete-time resource task network formulation for the reactive scheduling of a mixed batch/continuous process, Ind. Eng. Chem. Res., 2014, vol. 53, no. 44, p. 17112.

    Article  CAS  Google Scholar 

  38. Nie, Y., Biegler, L.T., Villa, C.M., and Wassick, J.M., Discrete time formulation for the integration of scheduling and dynamic optimization, Ind. Eng. Chem. Res., 2015, vol. 54, no. 16, p. 4303.

    Article  CAS  Google Scholar 

  39. Nie, Y., Witt, P., Agarwal, A., and Biegler, L.T., Optimal active catalyst and inert distribution in catalytic fixed bed reactors: ortho-xylene oxidation, Ind. Eng. Chem. Res., 2013, vol. 52, no. 44, p. 15311.

    Article  CAS  Google Scholar 

  40. Nystrom, R., Franke, R., Harjunkoski, I., and Kroll, A., Production campaign planning including grade transition sequencing and dynamic optimization, Comput. Chem. Eng., 2005, vol. 29, p. 2163.

    Article  Google Scholar 

  41. Ostrovsky, G.M., Lapteva, T.V., and Ziyatdinov, N.N., Optimal design of chemical processes under uncertainty, Theor. Found. Chem. Eng., 2014, vol. 48, no. 5, pp. 583–593. doi 10.1134/S0040579514050212

    Article  CAS  Google Scholar 

  42. Ostrovsky, G.M., Ziyatdinov, N.N., Lapteva, T.V., and Silvestrova, A., Optimization of chemical process design with chance constraints by an iterative partitioning approach, Ind. Eng. Chem. Res., 2015, vol. 54, no. 13, p. 3412.

    Article  CAS  Google Scholar 

  43. Pesch, H.J., A practical guide to the solution of real-life optimal control problems, Control Cybernetics, 1994, vol. 23, p.7.

    Google Scholar 

  44. Pesch, H.J. and Plail, M., The cold war and the maximum principle of optimal control, Documenta Mathematica, 2012, vol. ISMP:331–343.

    Google Scholar 

  45. Pontryagin, V.V., Boltyanskii, Y., Gamkrelidze, R., and Mishchenko, E., The Mathematical Theory of Optimal Processes, New York: Interscience, 1962.

    Google Scholar 

  46. Raghunathan, A.U., Gopal, V., Subramanian, D., Biegler, L.T., and Samad, T., Dynamic optimization strategies for three-dimensional conflict resolution of multiple aircraft, Control Dyn., 2004, vol. 27, p.586.

    Article  Google Scholar 

  47. Ray, W.H., Advanced Process Control, New York: McGraw-Hill, 1981.

    Google Scholar 

  48. Reddien, G.W., Collocation at gauss points as a discretization in optimal control, SIAM J. Control Optim., 1979, vol. 17, p.298.

    Article  Google Scholar 

  49. Rooney, W.C. and Biegler, L.T., Optimal process design with model parameter uncertainty and process variability, AIChE J., 2003, vol. 49, no. 2, p.438.

    Article  CAS  Google Scholar 

  50. Sethi, S.P. and Thompson, G.L., Optimal Control Theory: Applications to Management Science and Economics, Dordrecht: Kluwer Academic, 2000.

    Google Scholar 

  51. Shi, J., Biegler, L.T., Hamdan, I., and Wassick, J., Optimization of grade transitions in polyethylene solution polymerization process under uncertainty, Comput. Chem. Eng., 2016, vol. 95, pp. 260–279. doi 10.1016/j.compchemeng.2016.08.002

    Article  CAS  Google Scholar 

  52. Shi, J., Biegler, L.T., and Hamdan, I., Optimization of grade transitions in polyethylene solution polymerization processes, AIChE J., 2016, vol. 62, no. 4, p. 1126.

    Article  CAS  Google Scholar 

  53. Srinivasan, B., Palanki, S., and Bonvin, D., Dynamic optimization of batch processes I. characterization of the nominal solution, Comput. Chem. Eng., 2003, vol. 27, p.1.

    Article  CAS  Google Scholar 

  54. Steinbach, M.C., Bock, H.G., Kostin, G.V., and Longman, R.W., Mathematical optimization in robotics: Towards automated high speed motion planning, Math. Ind., 1997, vol. 7, p.303.

    Google Scholar 

  55. Swaney, R.E. and Grossmann, I.E., An index for operational flexibility in chemical process design, AIChE J., 1985, vol. 31, p.621.

    Article  CAS  Google Scholar 

  56. Vassiliadis, V.S., Sargent, R.W.H., and Pantelides, C.C., Solution of a class of multistage dynamic optimization problems. Part I–Algorithmic framework, Ind. Eng. Chem. Res., 1994, vol. 33, p. 2115.

    Google Scholar 

  57. Vassiliadis, V.S., Sargent, R.W.H., and Pantelides, C.C., Solution of a class of multistage dynamic optimization problems. Part II–problems with path constraints, Ind. Eng. Chem. Res., 1994, vol. 33, p. 2123.

    Article  CAS  Google Scholar 

  58. Wächter, A. and Biegler, L.T., On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming, Math. Program., 2006, vol. 106, no. 1, p. 25.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenz T. Biegler.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biegler, L.T. Integrated Optimization Strategies for Dynamic Process Operations. Theor Found Chem Eng 51, 910–927 (2017). https://doi.org/10.1134/S004057951706001X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057951706001X

Keywords

Navigation