Skip to main content
Log in

Decision support for the development, simulation and optimization of dynamic process models

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Simulation is besides experimentation the major method for designing, analyzing and optimizing chemical processes. The ability of simulations to reflect real process behavior strongly depends on model quality. Validation and adaption of process models are usually based on available plant data. Using such a model in various simulation and optimization studies can support the process designer in his task. Beneath steady state models there is also a growing demand for dynamic models either to adapt faster to changing conditions or to reflect batch operation. In this contribution challenges of extending an existing decision support framework for steady state models to dynamic models will be discussed and the resulting opportunities will be demonstrated for distillation and reactor examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mitsos A, Asprion N, Floudas C A, Bortz M, Baldea M, Bonvin D, Caspari A, Schäfer P. Challenges in process optimization for new feedstocks and energy sources. Computers & Chemical Engineering, 2018, 113: 209–221

    Article  CAS  Google Scholar 

  2. Biegler L T, Grossmann I E, Westerberg A W. Systematic Methods of Chemical Process Design. Pearson Education (1997)

  3. Asprion N, Bortz M. Process modeling, simulation and optimization: from single solutions to a multitude of solutions to support decision making. Chemieingenieurtechnik (Weinheim), 2018; 90(11): 1727–1738

    CAS  Google Scholar 

  4. Bortz M, Burger J, von Harbou E, Klein M, Schwientek J, Asprion N, Böttcher R, Köfer K H, Hasse H. Efficient approach for calculating Pareto boundaries under uncertainties in chemical process design. Industrial & Engineering Chemistry Research, 2017; 56(44): 12672–12681

    Article  CAS  Google Scholar 

  5. Asprion N. Modeling, simulation and optimization 4.0 of a distillation column. Chemieingenieurtechnik (Weinheim), 2020; 92(7): 879–889

    CAS  Google Scholar 

  6. Asprion N, Böttcher R, Pack R, Stavrou M E, Höller J, Schwientek J, Bortz M. Gray-box modeling for the optimization of chemical processes. Chemieingenieurtechnik (Weinheim), 2019; 91(3): 305–313

    CAS  Google Scholar 

  7. Kahrs O, Marquardt W. Incremental identification of hybrid process models. Computers & Chemical Engineering, 2008; 32(4–5): 694–705

    Article  CAS  Google Scholar 

  8. Kahrs O, Marquardt W. The validity domain of hybrid models and its application in process engineering. Chemical Engineering and Processing, 2007; 46(11): 1054–1066

    Article  CAS  Google Scholar 

  9. Franceschini G, Macchietto S. Model-based design of experiments for parameter precision: state of the art. Chemical Engineering Science, 2008; 63(19): 4846–4872

    Article  CAS  Google Scholar 

  10. Bortz M, Burger J, Asprion N, Blagov S, Böttcher R, Nowak U, Scheithauer A, Welke R, Küfer K H, Hasse H. Multi-criteria optimization in chemical process design and decision support by navigation on Pareto sets. Computers & Chemical Engineering, 2014; 60(01): 354–363

    Article  CAS  Google Scholar 

  11. Burger J, Asprion N, Blagov S, Böttcher R, Nowak U, Bortz M, Welke R, Küfer K H, Hasse H. Multi-objective optimization and decision support in process engineering—implementation and application. Chemieingenieurtechnik (Weinheim), 2014; 86(7): 1065–1072

    CAS  Google Scholar 

  12. Asprion N, Benfer R, Blagov S, Böttcher R, Bortz M, Berezhnyi M, Burger J, Von Harbou E, Küfer K H, Hasse H. INES—interface between experiments and simulation. Chemieingenieurtechnik (Weinheim), 2015; 87(12): 1810–1825

    CAS  Google Scholar 

  13. Asprion N, Blagov S, Böttcher R, Schwientek J, Burger J, von Harbou E, Bortz M. Simulation and multi-criteria optimization under uncertain model parameters of a cumene process. Chemieingenieurtechnik (Weinheim), 2017; 89(5): 665–674

    CAS  Google Scholar 

  14. Forte E, Von Harbou E, Burger J, Asprion N, Bortz M. Optimal design of laboratory and pilot-plant experiments using multiobjective optimization. Chemieingenieurtechnik (Weinheim), 2017; 89(5): 645–654

    CAS  Google Scholar 

  15. Burger J, Asprion N, Blagov S, Bortz M. Simple perturbation scheme to consider uncertainty in equations of state for the use in process simulation. Journal of Chemical & Engineering Data, 2017; 62(1): 268–274

    Article  CAS  Google Scholar 

  16. Von Harbou E, Ryll O, Schrabback M, Bortz M, Hasse H. Reactive distillation in a dividing-wall column: model development, simulation, and error analysis. Chemieingenieurtechnik (Weinheim), 2017; 89(10): 1315–1324

    CAS  Google Scholar 

  17. Höller J, Bickert P, Schwartz P, Von Kurnatowski M, Kerber J, Künzle N, Lorenz H M, Asprion N, Blagov S, Bortz M. Parameter estimation strategies in thermodynamics. ChemEngineering, 2019; 3(2): 56

    Article  Google Scholar 

  18. Asprion N, Böttcher R, Mairhofer J, Yliruka M, Höller J, Schwientek J, Vanaret C, Bortz M. Implementation and application of model-based design of experiments in a flowsheet simulator. Journal of Chemical & Engineering Data, 2020; 65(3): 1135–1145

    Article  CAS  Google Scholar 

  19. Charpentier J C. Among the trends for a modern chemical engineering, the third paradigm: the time and length multiscale approach as an efficient tool for process intensification and product design and engineering. Chemical Engineering Research & Design, 2010; 88(3): 248–254

    Article  CAS  Google Scholar 

  20. Bardow A, Steur K, Gross J. Continuous-molecular targeting for integrated solvent and process design. Industrial & Engineering Chemistry Research, 2010; 49(6): 2834–2840

    Article  CAS  Google Scholar 

  21. Bortz M, Heese R, Scherrer A, Gerlach T, Runowski T. Estimating mixture properties from batch distillation using semi-rigorous and rigorous models. Computer-Aided Chemical Engineering, 2019, 46: 295–300

    Article  Google Scholar 

  22. Galán S, Feehery W F, Barton P I. Parametric sensitivity functions for hybrid discrete/continuous systems. Applied Numerical Mathematics, 1999; 31(1): 17–47

    Article  Google Scholar 

  23. Nad M, Spiegel L. Simulation of batch distillation by computer and comparison with experiment. Proceedings CEF ‘87’, Computers and Chemical Engineering/EFCE Giardini Naxos, Taormina, Italy, 1987, 737

  24. Schittkowski K. NLPQLP: a fortran implementation of a sequential quadratic programming algorithm with distributed and non-monotone line search—user’s guide, version 4.2. Report, Department of Computer Science, University of Bayreuth, 2009

  25. Hanneman-Tamás R, Marquardt W. How to verify optimal controls computed by direct shooting methods?—a tutorial. Journal of Process Control, 2012; 22(2): 494–507

    Article  Google Scholar 

  26. Logist F, Vallerio M, Houska B, Diehl M, van Impe J. Multiobjective optimal control of chemical processes using ACADO toolkit. Computers & Chemical Engineering, 2012, 37: 191–199

    Article  CAS  Google Scholar 

  27. Nimmeggers P, Valerio M, Telen D, van Impe J, Logist F. Interactive multi-objective dynamic optimization of bioreactors under parametric uncertainty. Chemieingenieurtechnik (Weinheim), 2019; 91(3): 1–15

    Google Scholar 

  28. Maußner J, Freund H. Multi-objective reactor design under uncertainty: a decomposition approach based on cubature rules. Chemical Engineering Science, 2020, 212: 115304

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Asprion.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asprion, N., Böttcher, R., Schwientek, J. et al. Decision support for the development, simulation and optimization of dynamic process models. Front. Chem. Sci. Eng. 16, 210–220 (2022). https://doi.org/10.1007/s11705-021-2046-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-021-2046-x

Keywords

Navigation