Skip to main content
Log in

Use of Pd membranes in catalytic reactors for steam methane reforming for pure hydrogen production

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

This review analyzes publications on experimental studies and mathematical modeling in the field of development of a catalytic reformer (mainly, steam methane conversion) with a fixed catalytic bed. The specific feature of such a reformer is its integration with a Pd membrane for the purpose of producing high-purity hydrogen to power a low-temperature fuel cell battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Uemiya, S., Sato, N., Ando, H., et al., Steam Reforming of Methane in a Hydrogen-Permeable Membrane Reactor, Appl. Catal., 1991, vol. 67, p. 223.

    CAS  Google Scholar 

  2. Shu, J., Grandjean, B., and Kaliaguine, S., Methane Steam Reforming in Asymmetric Pd- and Pd- Ag/Porous SS Membrane Reactors, Appl. Catal., A, 1994, vol. 119, p. 305.

    Article  CAS  Google Scholar 

  3. Lattner, J.R. and Harold, M.P., Comparison of Conventional and Membrane Reactor Fuel Processors for Hydrocarbon-Based PEM Fuel Cell Systems, Int. J. Hydrogen Energy, 2004, vol. 29, no. 4, p. 393.

    Article  CAS  Google Scholar 

  4. Lattner, J.R. and Harold, M.P., Comparison of Methanol-Based Fuel Processors for PEM Fuel Cell Systems, Appl. Catal., B, 2005, vol. 56, p. 149.

    Article  CAS  Google Scholar 

  5. Kikuchi, E., Nemoto, Y., Kajiwara, M., et al., Steam Reforming of Methane in Membrane Reactors: Comparison of Electroless-Plating and CVD Membranes and Catalyst Packing Modes, Catal. Today, 2000, vol. 56, p. 75.

    Article  CAS  Google Scholar 

  6. Uemiya, S., Brief Review of Steam Reforming Using a Metal Membrane Reactor, Top. Catal., 2004, vol. 29, nos. 1–2, p. 79.

    Article  CAS  Google Scholar 

  7. Tong, J., Matsumura, Y., Suda, H., et al., Experimental Study of Steam Reforming of Methane in a Thin (6 μm) Pd-Based Membrane Reactor, Ind. Eng. Chem. Res., 2005, vol. 44, p. 1454.

    Article  CAS  Google Scholar 

  8. Tong, J. Matsumura, Y., et al., Pure Hydrogen Production by Methane Steam Reforming with Hydrogen-Permeable Membrane Reactor, Catal. Today, 2006, vol. 111, p. 147.

    Article  CAS  Google Scholar 

  9. Chen, Y., Wang, Y., Xu, H., et al., Integrated One-Step PEMFC-Grade Hydrogen Production from Liquid Hydrocarbons Using Pd Membrane Reactor, Ind. Eng. Chem. Res., 2007, vol. 46, p. 510.

    Google Scholar 

  10. Chen, Y., Wang, Y., Xu, H., et al., Efficient Production of Hydrogen from Natural Gas Steam Reforming in Palladium Membrane Reactor, Appl. Catal., B, 2008, vol. 80, p. 283.

    Google Scholar 

  11. Hara, S., Sakaki, K., and Itoh, N., Decline in Hydrogen Permeation Due to Concentration Polarization and CO Hindrance in a Palladium Membrane Reactor, Ind. Eng. Chem. Res., 1999, vol. 38, p. 4913.

    Article  CAS  Google Scholar 

  12. Koukou, M.K., Papayannakos, N., Markatos, N.C., et al., Performance of Ceramic Membranes at Elevated Pressure and Temperature: Effect of Non-Ideal Flow Conditions in a Pilot Scale Membrane Separator, J. Membr. Sci., 1999, vol. 155, p. 241.

    Article  CAS  Google Scholar 

  13. Vogiatzis, E., Koukou, M.K., Papayannakos, N., et al., Heat Dispersion Effects on the Functional Characteristics of Industrial-Scale Adiabatic Membrane Reactors, Chem. Eng. Technol., 2004, vol. 27, p. 857.

    Article  CAS  Google Scholar 

  14. Markatos, N.C., Vogiatzis, E., Koukou, M.K., et al., Membrane Reactor Modeling: A Comparative Study To Evaluate the Role of Combined Mass and Heat Dispersion in Large-Scale Adiabatic Membrane Modules, Chem. Eng. Res. Des., 2005, vol. 83, p. 1171.

    Article  CAS  Google Scholar 

  15. Mori, N., Nakamura, T., Noda, K., et al., Reactor Configuration and Concentration Polarization in Methane Steam Reforming by a Membrane Reactor with a Highly Hydrogen-Permeable Membrane, Ind. Eng. Chem. Res., 2007, vol. 46, p. 1952.

    Article  CAS  Google Scholar 

  16. Mori, N., Nakamura, T., Sakai, O., et al., CO-Free Hydrogen Production by Membrane Reactor Equipped with CO Methanator, Ind. Eng. Chem. Res., 2008, vol. 47, p. 1421.

    Article  CAS  Google Scholar 

  17. Tiemersma, T.P., Patil, C.S., Annaland, M., et al., Modelling of Packed Bed Membrane Reactors for Autothermal Production of Ultrapure Hydrogen, Chem. Eng. Sci., 2006, vol. 61, p. 1602.

    Article  CAS  Google Scholar 

  18. Simakov, D. and Sheintuch, M., Design of a Thermally Balanced Membrane Reformer for Hydrogen Production, AIChE J., 2008, vol. 54, no. 10, p. 2735.

    Article  CAS  Google Scholar 

  19. Simakov, D. and Sheintuch, M., Demonstration of a Scaled-Down Autothermal Membrane Methane Reformer for Hydrogen Generation, Int. J. Hydrogen Energy, 2009, vol. 34, p. 8866.

    Article  CAS  Google Scholar 

  20. Simakov, D. and Sheintuch, M., Experimental Optimization of an Autonomous Scaled-Down Methane Membrane Reformer for Hydrogen Generation, Ind. Eng. Chem. Res., 2010, vol. 49, no. 3, p. 1123.

    Article  CAS  Google Scholar 

  21. Pieterse, J.A.Z., Boon, J., van Delft, Y.C., et al., On the Potential of Nickel Catalysts for Steam Reforming in Membrane Reactors, Catal. Today, 2010, vol. 156, p. 153.

    Article  CAS  Google Scholar 

  22. Babak, V.N., Babak, T.B., Zakiev, S.E., and Kholpanov, L.P., Theoretical Study of Hydrocarbon Dehydrogenation at High Temperatures, Theor. Found. Chem. Eng., 2009, vol. 43, no. 1, p. 74.

    Article  CAS  Google Scholar 

  23. Li, A., Lim, C.J., and Grace, J.R., Staged-Separation Membrane Reactor for Steam Methane Reforming, Chem. Eng. J., 2008, vol. 138, p. 452.

    Article  CAS  Google Scholar 

  24. Caravella, A., Di Maio, F.P., and Di Renzo, A., Computational Study of Staged Membrane Reactor Configurations for Methane Steam Reforming. I. Optimization of Stage Lengths, AIChE J., 2010, vol. 56, no. 1, p. 248.

    Article  CAS  Google Scholar 

  25. Caravella, A., Di Maio, F.P., and Di Renzo, A., Computational Study of Staged Membrane Reactor Configurations for Methane Steam Reforming. II. Effect of Number of Stages and Catalyst Amount, AIChE J., 2010, vol. 56, no. 1, p. 259.

    Article  CAS  Google Scholar 

  26. Kirillov, V.A. and Meshcheryakov, V.D., Modeling of a Membrane Reactor for ÑÎ Steam Conversion for Pure Hydrogen Production from Synthesis Gas, Khim. Promst’. Segodnya, 2009, no. 9, p. 33.

  27. Kirillov, V.A., Meshcheryakov, V.D., Brizitskii, O.F., and Terent’ev, V. Ya., Analysis of a Power System Based on Low-Temperature Fuel Cells and a Fuel Processor with a Membrane Hydrogen Separator, Theor. Found. Chem. Eng., 2010, vol. 44, no. 3, p. 227.

    Article  CAS  Google Scholar 

  28. Campanari, S., Macchi, E., and Manzo, G., Membrane Reformer PEM Cogeneration Systems for Residential Applications-Part A: Full Load and Partial Load Simulation, Asia-Pac. J. Chem. Eng., 2009, vol. 4, p. 301.

    Article  CAS  Google Scholar 

  29. Bernardo, P., Barbieri, G., and Drioli, E., Evaluation of Membrane Reactor with Hydrogen-Selective Membrane in Methane Steam Reforming, Chem. Eng. Sci., 2010, vol. 65, p. 1159.

    Article  CAS  Google Scholar 

  30. Shirasaki, Y., Tsuneki, T., Ota, Y., et al., Development of Membrane Reformer System for Highly Efficient Hydrogen Production from Natural Gas, Int. J. Hydrogen Energy, 2009, vol. 34, p. 4482.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Shigarov.

Additional information

Original Russian Text © A.B. Shigarov, V.D. Meshcheryakov, V.A. Kirillov, 2011, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2011, Vol. 45, No. 5, pp. 504–518.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shigarov, A.B., Meshcheryakov, V.D. & Kirillov, V.A. Use of Pd membranes in catalytic reactors for steam methane reforming for pure hydrogen production. Theor Found Chem Eng 45, 595 (2011). https://doi.org/10.1134/S0040579511050356

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1134/S0040579511050356

Keywords

Navigation