Skip to main content
Log in

Synthesis and properties of TiO2-based nanomaterials

  • Nanotechnologies and Nanomaterials
  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

This article reviews the latest advances in the production and investigation of the properties of TiO2-based nanomaterials as photocatalysts for water decomposition into molecular oxygen and hydrogen, a component of disinfecting, photooxidative, and self-cleaning surfaces, and materials for sensors and catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, X. and Mao, S.S., Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications, Chem. Rev., 2007, vol. 107, no. 7, p. 2891.

    Article  CAS  Google Scholar 

  2. Thompson, T.L. and Yates, J.T., Surface Science Studies of the Photoactivation of TiO2—New Photochemical Processes, Chem. Rev., 2006, vol. 106, no. 10, p. 4428.

    Article  CAS  Google Scholar 

  3. Grätzel, M.J., Photoelectrochemical Cells, Nature, 2001, vol. 414, p. 338.

    Article  Google Scholar 

  4. Grätzel, M.J., Dye-Sensitized Solar Cells, J. Photochem. Photobiol., C, 2003, vol. 4, no. 2, p. 145.

    Article  Google Scholar 

  5. Wing, R., Hashimoto, K., Fujihima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M., and Watanabe, T., Light-Induced Amphiphilic Surfaces, Nature, 1997, vol. 388, p. 431.

    Article  Google Scholar 

  6. Sakai, N., Wang R., Fujihima A., Watanabe, T., and Hashimoto, R., Effect of Ultrasonic Treatment on Highly Hydrophilic TiO2 Surfaces, Langmuir, 1998, vol. 14, no. 20, p. 5918.

    Article  CAS  Google Scholar 

  7. Wang, R., Sakai, N., Fujihima, A., Watanabe, T., and Hashimoto, K., Studies of Surface Wettability Conversion on TiO2 Single-Crystal Surfaces, J. Phys. Chem. B, 1999, vol. 103, p. 2188.

    Article  CAS  Google Scholar 

  8. Miao, L., Tanemura, S., Kondo, Y., Iwata, M., Toh, S., and Kaneko, K., Microstructure and Bactericidal Ability of Photocatalytic TiO2 Thin Films Prepared by RF Helicon Magnetron Sputtering, Appl. Surf. Sci., 2004, vol. 238, nos. 1–4, p. 125.

    Article  CAS  Google Scholar 

  9. Fujihima, A. and Honda, K., Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 1972, vol. 238, no. 5358, p. 37.

    Article  Google Scholar 

  10. Asahi, R., Morikava, Ò., Ohwaki, T., Aoki, K., and Taga, Y., Visible Light Photocatalysis in Nitrogen-Doped Titanium Oxides, Science, 2001, vol. 293, p. 269.

    Article  CAS  Google Scholar 

  11. Mor, G.K., Carvalho, M.A., Varghese, O.K., Pishko, M. V., and Grimes, C. A., A Room-Temperature TiO2-Nanotube Hydrogen Sensor Able to Self-Clean Photoactively from Environmental Contamination, J. Mater. Res., 2004, vol. 19, no. 2, p. 628.

    Article  CAS  Google Scholar 

  12. Serdan, A.A., Heterosurface Sorbents for High-Performance Liquid Chromatography, in 100 let khromatografii (100 Years of Chromatography), Moscow: Nauka, 2003, p. 570.

    Google Scholar 

  13. Anpo, M., Yamashita, H., Ichihashi, Y., and Ehara, S., Photocatalytic Reduction of CO2 with H2O on Various Titanium-Oxide Catalysts, J. Electroanal. Chem., 1995, vol. 396, nos. 1–2, p. 21.

    Google Scholar 

  14. Vorontsov, A.V., Kozlov, D.V., Smirniotis, P.G., and Parmon, V.N., TiO2 Photocatalytic Oxidation: I. Photocatalysts for Liquid-Phase and Gas-Phase Processes and the Photocatalytic Degradation of Chemical Warfare Agent Simulants in a Liquid Phase, Kinet. Catal., 2005, vol. 46, no. 2, p. 189.

    Article  CAS  Google Scholar 

  15. Alivisatos, A.P., Semiconductor Clusters, Nanocrystals, and Quantum Dots, Science, 1996, vol. 71, p. 933.

    Article  Google Scholar 

  16. Burda, C., Chen, X., Narayanan, R., and El-Sayed, M.A., Chemistry and Properties of Nanocrystals of Different Shapes, Chem. Rev., 2005, vol. 105, p. 1025.

    Article  CAS  Google Scholar 

  17. Khimicheskaya entsiklopediya (Encyclopedia of Chemistry), Moscow: Bol’shaya Rossiiskaya Entsiklopediya, 1995, vol. 4, p. 639.

  18. Murrey, C.A., Kagan, C.R., and Bavendi, M.G., Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies, Annu. Rev. Mater. Sci., 2000, vol. 30, p. 545.

    Article  Google Scholar 

  19. Yin, Y. and Alivisatos, A.P., Colloidal Nanocrystal Synthesis and the Organic-Inorganic Interface, Nature, 2005, vol. 137, p. 664.

    Article  Google Scholar 

  20. Adams, D.M., Brus, L., Chidsey, C.E.D., Creager, S., Creutz, C., Kagan, C.R., Kamat, P.V., Lieberman, M., Lindsay, S., Marcus, R.A., Metzger, R.M., Michel-Beyerle, M.E., Miller, J.R., Newton, M.D., Rolison, D.R., Sankey, O., Schanze, K.S., Yardley, J., and Zhu, X., Charge Transfer on the Nanoscale: Current Status, J. Phys. Chem. B, 2003, vol. 107, p. 6668.

    Article  CAS  Google Scholar 

  21. Asbury, J.Â., Hao, E., Wang, Y.Q., Ghosh, H.N., Hirendra, N.G., and Liang, T.Q., Ultrafast Electron Transfer Dynamics from Molecular Adsorbates to Semiconductor Nanocrystalline Thin Films, J. Phys. Chem. B, 2001, vol. 105, no. 20, p. 4545.

    Article  CAS  Google Scholar 

  22. Chen, X., Lou, Y., Dayal, S., Qiu, X., Krolicki, R., and Burda, C., Doped Semiconductor Nanomaterials, J. Nanosci. Nanotechnol., 2005, vol. 5, p. 1408.

    Article  CAS  Google Scholar 

  23. Dresselhaus, M.S., Dresselhaus, G., and Jorio, A., Unusual Properties and Structure of Carbon Nanotubes, Annu. Rev. Mater. Sci., 2004, vol. 34, p. 247.

    Article  CAS  Google Scholar 

  24. El-Sayed, M.A., Small Is Different: Shape-, Size-, and Composition-Dependent Properties of Some Colloidal Semiconductor Nanocrystals, Ac., 2004, vol. 37, p. 326.

    CAS  Google Scholar 

  25. Pierre, A.C. and Pajonk, G.M., Chemistry of Aerogels and Their Applications, Chem. Rev., 2002, vol. 102, no. 11, p. 4243.

    Article  CAS  Google Scholar 

  26. Lu, Z.-l., Linder, E., and Mayer, H.A., Applications of Sol-Gel-Processed Interphase Catalysts, Chem. Rev., 2002, vol. 102, no. 10, p. 3543.

    Article  CAS  Google Scholar 

  27. Wight, A.P. and Davis, M.E., Design and Preparation of Organic-Inorganic Hybrid Catalysts, Chem. Rev., 2002, vol. 102, pp. 3589.

    Article  CAS  Google Scholar 

  28. Liu, A.R., Wang, S.M., Zhao, Y.R., and Zheng, Z., Low-Temperature Preparation of Nanocrystalline TiO2 Photocatalyst with a Very Large Specific Surface Area, Mater. Chem. Phys., 2006, vol. 99, no. 1, pp. 131.

    Article  CAS  Google Scholar 

  29. Addamo, M., Augugliaro, V., Di Paola, A., Garca-Lopez, E., Loddo, V., Marco, G., and Palmisano, L., Thin Solid Films, 2008, vol. 516, no. 12, p. 3802.

    Article  CAS  Google Scholar 

  30. Mallak, M., Bockmeyer, M., and Lobmann, D., Liquid Phase Deposition of TiO2 on Glass: Systematic Comparison to Films Prepared by Sol-Gel Processing Thin Solid Films, 2007, vol. 515, nos. 20–21, p. 8072.

    Article  CAS  Google Scholar 

  31. Huber, A., Brodyanski, A., Scheib, M., Orendorz, A., Ziegler, C., and Gnaser, H., Nanocrystalline Anatase TiO2 Thin Films: Preparation and Crystallite Size-Dependent Properties, Thin Solid Films, 2005, vol. 472, nos. 1–2, p. 114.

    Article  CAS  Google Scholar 

  32. Suriye, K., Praserthdam, P., and Jongsomjit, B., Control of Ti3+ Surface Defect on TiO2 Nanocrystal Using Various Calcination Atmospheres as the First Step for Surface Defect Creation and Its Application in Photocatalysis, Appl. Surf. Sci., 2007, vol. 253, no. 8, p. 3849.

    Article  CAS  Google Scholar 

  33. Cristante, V.M., Jorge, S.M.A., Valente, J.P.S., Saeki, M.J., Florentino, A.O., and Padilha, P.M., TiO2 Films Organofunctionalized with 2-Aminothiazole Ligand and Adsorbed Pd(II) Ions Applied in the Photocatalytic Degradation of Phenol in an Aqueous Medium, Thin Solid Films, 2007, vol. 515, no. 13, p. 5334.

    Article  CAS  Google Scholar 

  34. Yun, Y.J., Chung, J.S., Kim, S., Hahn, S.H., and Kim, E.J., “Low-Temperature Coating of Sol-Gel Anatase Thin Films, Mater. Lett., 2004, vol. 58, no. 29, p. 3703.

    Article  CAS  Google Scholar 

  35. Yang, J.-H., Han, Y.-S., and Choy, J.-H., TiO2 Thin-Films on Polymer Substrates and Their Photocatalytic Activity, Thin Solid Films, 2006, vol. 495, nos. 1–2, p. 266.

    Article  CAS  Google Scholar 

  36. Huang, D., Luo, G.S., and Wang, Y.J., Using Phosphoric Acid as a Catalyst to Control the Structures of Mesoporous Titanium Dioxide Materials, Microporous Mesoporous Mater., 2005, vol. 84, no. 1, pp. 27.

    Article  CAS  Google Scholar 

  37. Bu, S.J., Jin, Z.G., Liu, X.X., Yang, L.R., and Cheng, Z.J., Synthesis of TiO2 Porous Thin Films by Polyethylene Glycol Templating and Chemistry of the Process, J. Eur. Ceram. Soc., 2005, vol. 25, no. 5, p. 673.

    Article  CAS  Google Scholar 

  38. Guo, B., Liu, Zh., Hong, L., and Jiang, H., Sol-Gel Derived Photocatalytic Porous TiO2 Thin Films, Surf. Coat. Technol., 2005, vol. 198, nos. 1–3, p. 24.

    Article  CAS  Google Scholar 

  39. Li, X., Xu, Y., and Wang, C., Suppression of Jahn-Teller Distortion of Spinel LiMn2O4 Cathode, Thin Solid Films, 2005, vol. 479, nos. 1–2, p. 310.

    Article  Google Scholar 

  40. Li, M.-L., Xu, M.-X., and Li, Y., Preparation and Oxygen-Sensing Properties of TiO2 Porous Thin Films on Alumina Substrate, Trans. Nonferrous Met. Soc. Chin., 2006, vol. 16,Suppl. no. 1, p. s257.

    Article  Google Scholar 

  41. Sabataityte, J., Oja, I., Lenzmann, F., Volobujeva, O., and Krunks, M., Characterization of Nanoporous TiO2 Films Prepared by Sol-Gel Method, C. R. Chim., 2006, vol. 9, nos. 5–6, p. 708.

    Article  CAS  Google Scholar 

  42. Qi, L. and Birnie, D.P., Templated Titania Films with Meso- and Macroporosities, Mater. Lett., 2007, vol. 61, no. 11–12, p. 2191.

    Article  CAS  Google Scholar 

  43. Habibi, M.H. and Nasr-Esfahani, M., Preparation, Characterization and Photocatalytic Activity of a Novel Nanostructure Composite Film Derived from Nanopowder TiO2 and Sol-Gel Process Using Organic Dispersant, Dyes Pigm., 2007, vol. 75, no. 3, p. 714.

    Article  CAS  Google Scholar 

  44. Ou, Y., Lin, J., Fang, Sh., and Liao, D., Study on the Preparation of Ultrafine Mesoporous TiO2 with Controllable Crystalline Phase and Its Photocatalytic Activities, Catal. Commun., 2007, vol. 8, no. 6, p. 936.

    Article  CAS  Google Scholar 

  45. Kim, B.-H., Jeon, Y.-S., Jeong, J.-H., An, J.-H., Jeon, K.-O., and Hwang, K.-S., Photoreactive Titanium Oxide Layer Prepared from a Titanium Naphthenate, Curr. Appl. Phys., 2007, vol. 7, no. 1, p. 108.

    Article  Google Scholar 

  46. Kao, L.-H., Hsu, T.Ch., and Lu, H.-Y., Sol-Gel Synthesis and Morphological Control of Nanocrystalline TiO2 via Urea Treatment, J. Colloid Interface Sci., 2007, vol. 316, no. 1, p. 160.

    Article  CAS  Google Scholar 

  47. Kim, D.S., Han, Sh.J., and Kwak, S.-Y., Synthesis and Photocatalytic Activity of Mesoporous TiO2 with the Surface Area, Crystallite Size, and Pore Size, J. Colloid Interface Sci., 2007, vol. 316, no. 1, p. 85.

    Article  CAS  Google Scholar 

  48. Sankapal, B.R., Lux-Steiner, M.Ch., and Ennaoui, A., Synthesis and Ñharacterization of Anatase-TiO2 Thin Films, Appl. Surf. Sci., 2005, vol. 239, no. 2, p. 165.

    Article  CAS  Google Scholar 

  49. Liu, D. and Yates, M.Z., Fabrication of Size-Tunable TiO2 Tubes Using Rod-Shaped Calcite Templates, Langmuir, 2007, vol. 23, no. 20, p. 10333.

    Article  CAS  Google Scholar 

  50. Gao, Y.-F., Nagai, M., Seo, W.S., and Koumoto, K., Thick Transparent Rutile TiO2 Films Crystallized in Solution, Langmuir, 2007, vol. 23, no. 9, p. 4712.

    Article  CAS  Google Scholar 

  51. Zhu, J., Yang, J., Bian, Z.F., Ren, J., Liu, Y.M., Cao, Y., He, H.Y., and Fan, K.N., Nanocrystalline Anatase TiO2 Photocatalysts Prepared via a Facile Low Temperature Nonhydrolytic Sol—Gel Reaction of TiCl4 and Benzyl Alcohol, Appl. Catal., B., 2007, vol. 76, nos. 1–2, p. 82.

    CAS  Google Scholar 

  52. Yu, J.C., Yu, J., and Zhao, J., Enhanced Photocatalytic Activity of Mesoporous and Ordinary ÒiO2 Thin Films by Sulfuric Acid Treatment, Appl. Catal., B, 2002, vol. 36, no. 1, p. 31.

    Article  CAS  Google Scholar 

  53. Černigoj, U., Štangar, U.L., Trebše P., Krašovec, U.O., and Gross, S., Photocatalytically Active TiO2 Thin Films Produced by Surfactant-Assisted Sol-Gel Processing, Thin Solid Films, 2006, vol. 495, nos. 1–2, p. 327.

    Article  Google Scholar 

  54. Medina-Valtierra, J., Frausto-Reyes, C., Ramirez-Ortiz, C., Moctezuma, E., and Ruiz, F., Preparation of Rough Anatase Films and the Evaluation of Their Photocatalytic Efficiencies, Appl. Catal., B, 2007, vol. 76, nos. 3–4, p. 264.

    CAS  Google Scholar 

  55. Sreethawong, Th., Suzuki, Y., and Yoshikava, S., Synthesis, Characterization, and Photocatalytic Activity for Hydrogen Evolution of Nanocrystalline Mesoporous Titania Prepared by Surfactant-Assisted Templating Sol-Gel Process, J. Solid State Chem., 2005, vol. 178, no. 1, p. 329.

    Article  CAS  Google Scholar 

  56. Choi, H., Stathatos, E., and Dionysiou, D.D., Synthesis of Nanocrystalline Photocatalytic TiO2 Thin Films and Particles Using Sol-Gel Method Modified with Nonionic Surfactants, Thin Solid Films, 2006, vol. 510, nos. 1–2, p. 107.

    Article  CAS  Google Scholar 

  57. Baiqi, W., Ligiang, J., Yichun, Q., Shudan, L., Baojiang, J., Libin, Y., Baifu, X., and Honggang, F., Enhancement of the Photocatalytic Activity of TiO2 Nanoparticles by Surface-Capping DBS Groups, Appl. Surf. Sci., 2006, vol. 252, no. 8, p. 2817.

    Article  Google Scholar 

  58. Choi, H., Stathatos, E., and Dionysiou, D.D., Photocatalytic TiO2 Films and Membranes for the Development of Efficient Waste Water Treatment and Reuse Systems, Desalination, 2007, vol. 202, nos. 1–3, p. 199.

    Article  CAS  Google Scholar 

  59. Liao, D.L. and Liao, B.Q., Shape, Size and Photocatalytic Activity Control of TiO2 Nanoparticles with Surfactants, J. Photochem. Photobiol., A, 2007, vol. 187, nos. 2–3, p. 363.

    Article  CAS  Google Scholar 

  60. Liao, D.L., Badour, C.A., and Liao, B.Q., Preparation of Nanosized TiO2/ZnO Composite Catalyst and Its Photocatalytic Activity for Degradation of Methyl Orange, J. Photochem. Photobiol., A, 2008, vol. 194, no. 1, p. 11.

    Article  CAS  Google Scholar 

  61. Wang, G., Hydrothermal Synthesis and Photocatalytic Activity of Nanocrystalline TiO2 Powders in Ethanol-Water Mixed Solutions, J. Mol. Catal., 2007, vol. 274, nos. 1–2, p. 185.

    Article  CAS  Google Scholar 

  62. Bae, E. and Ohno, T., Exposed Crystal Surface-Controlled Rutile TiO2 Nanorods Prepared by Hydrothermal Treatment in the Presence of Poly(vinyl pyrrolidone), Appl. Catal., B, 2009, vol. 91, nos. 3–4, p. 634.

    CAS  Google Scholar 

  63. Hafez, H.S., Synthesis of Highly-Active Single-Crystalline TiO2 Nanorods and Its Application in Environmental Photocatalysis, Mater. Lett., 2009, vol. 63, no. 17, p. 1471.

    Article  CAS  Google Scholar 

  64. Yu, J., Yu, H., Cheng, B., Zhou, M., and Zhao, X., Enhanced Photocatalytic Activity of TiO2 Powder (P25) by Hydrothermal Treatment, J. Mol. Catal. A: Chem., 2006, vol. 253, nos. 1–2, p. 112.

    Article  CAS  Google Scholar 

  65. Jitputti, J., Pavasupree, S., Suzuki, Y., and Yoshikawa, S., Synthesis and Photocatalytic Activity for Water-Splitting Reaction of Nanocrystalline Mesoporous Titania Prepared by Hydrothermal Method, J. Solid State Chem., 2007, vol. 180, no. 5, p. 1743.

    Article  CAS  Google Scholar 

  66. Xu, J., Jia, C., Cao, B., and Zhang, W.F., Electrochemical Properties of Anatase TiO2 Nanotubes as an Anode Material for Lithium-Ion Batteries, Electrochim. Acta, 2007, vol. 52, no. 28, p. 8044.

    Article  CAS  Google Scholar 

  67. Kominami, H., Kumamoto, H., Kera, Y., and Ohtani, B., Immobilization of Highly Active Titanium(IV) Oxide Particles: A Novel Strategy of Preparation of Transparent Photocatalytic Coatings, Appl. Catal., B, 2001, vol. 30, nos. 3–4, p. 329.

    CAS  Google Scholar 

  68. Sankapal, B.R., Sartale, Sh.P., Lux-Steiner, M.Ch., and Ennaoui, A., Chemical and Electrochemical Synthesis of Nanosized TiO2 Anatase for Large-Area Photon Conversion, C. R. Chim., 2006, vol. 9, nos. 5–6, p. 702.

    Article  CAS  Google Scholar 

  69. Karuppuchamy, S., Suzuki, S., Ito, S., and Endo, T., A Novel One-Step Electrochemical Method to Obtain Crystalline Titanium Dioxide Films at Low Temperature, Curr. Appl. Phys., 2009, vol. 9, no. 1, p. 243.

    Article  Google Scholar 

  70. Macak, J.M. and Schmuki, P., Anodic Growth of Self-Organized Anodic TiO2 Nanotubes in Viscous Electrolytes, Electrochim. Acta, 2006, vol. 52, no. 3, p. 1258.

    Article  CAS  Google Scholar 

  71. Macak, J.M., Tsuchiya, H., Berger, S., Bauer, S., Fujimoto, S., and Schmuki, P., On Wafer TiO2 Nanotube-Layer Formation by Anodization of Ti-Films on Si, Chem. Phys. Lett., 2006, vol. 428, nos. 4–6, p. 421.

    Article  CAS  Google Scholar 

  72. Chen, X., Sriver, M., Suen, T., and Mao, S.S., Fabrication of 10 nm Diameter TiO2 Nanotube Arrays by Titanium Anodization, Thin Solid Films, 2007, vol. 515, no. 24, p. 8511.

    Article  CAS  Google Scholar 

  73. Liu, Y., Zhou, Preparation of Short, Robust and Highly Ordered TiO2 Nanotube Arrays and Their Applications as Electrode, Appl. Catal., B, 2009, vol. 92, nos. 3–4, p. 326.

    CAS  Google Scholar 

  74. Vigil, E., Saadoun, L., Ayllon, J.A., Domenech, X., Zumeta, I., and Rodriguez-Clemente, R., TiO2 Thin Film Deposition from Solution Using Microwave Heating, Thin Solid Films, 2000, vol. 365, no. 1, p. 12.

    Article  CAS  Google Scholar 

  75. Fernandez-Lima, F., Baptista, D.L., Zumeta, Y., Pedrero, E., Prioli, R., Vigil, E., and Zawislak, F.C., Structural Analysis of TiO2 Films Grown Using Microwave-Activated Chemical Bath Deposition, Thin Solid Films, 2002, vol. 419, nos. 1–2, p. 65.

    Article  CAS  Google Scholar 

  76. Horikoshi, H., Kajitani, M., Serpone, N.J., The Microwave-Photo-Assisted Degradation of Bisphenol-A in Aqueous TiO2 Dispersions Revisited: Re-Assessment of the Microwave Non-Thermal Effect, J. Photochem. Photobiol., A, 2007, vol. 188, no. 1, p. 1.

    Article  CAS  Google Scholar 

  77. Pol, V.G., Langzam, Y., and Zaban, A., Application of Microwave Superheating for the Synthesis of TiO2 Rods, Langmuir, 2007, vol. 23, no. 22, p. 11211.

    Article  CAS  Google Scholar 

  78. Pan, H., Qiu, X., Ivanov, I.N., Meyer, H.M., Wang, W., Zhu, W., Paranthaman, M.P., Zhang, Z., Eres, G., and Gu, B., Fabrication and Characterization of Brookite-Rich, Visible Light-Active TiO2 Films for Water Splitting, Appl. Catal., B, 2009, vol. 93, nos. 1–2, p. 90.

    CAS  Google Scholar 

  79. Bouazza, N., Ouzzine, M., Lillo-Rodenas, M.A., Eder, D., and Linares-Solano, A., TiO2 Nanotubes and CNT-TiO2 Hybrid Materials for the Photocatalytic Oxidation of Propene at Low Concentration, Appl. Catal., B, 2009. vol. 92, nos. 3–4, p. 377.

    CAS  Google Scholar 

  80. Chen, M.-L., Zhang, F., and Oh, W., Synthesis, Characterization, and Photocatalytic Analysis of CNT/TiO2 Cmposites Derived from MWCNTs and Titanium Sources, New Carbon Mater., 2009, vol. 24, no. 2, p. 159.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Evtushenko.

Additional information

Original Russian Text © Yu.M. Evtushenko, S.V. Romashkin, V.V. Davydov, 2010, published in Khimicheskaya Tekhnologiya, 2010, Vol. 11, No. 11, pp. 656–664.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evtushenko, Y.M., Romashkin, S.V. & Davydov, V.V. Synthesis and properties of TiO2-based nanomaterials. Theor Found Chem Eng 45, 731 (2011). https://doi.org/10.1134/S0040579511050071

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1134/S0040579511050071

Keywords

Navigation