Skip to main content
Log in

Bioethanol dehydration: State of the art

  • Organic Technologies
  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

This article is a survey of the present-day methods of dehydration of ethanol resulting from fermentation processes. The existing separation techniques for water-ethanol mixtures of various compositions are compared, and the conditions under which each particular technique is preferable are formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaminski, W., Marszalek, J., and Ciolkowska, A., Renewable Energy Source—Dehydrated Ethanol, Chem. Eng. J., 2008, vol. 135, no. 1, pp. 95–102.

    Article  CAS  Google Scholar 

  2. Tsarev, A.V., Balabin, R.M., Karpov, S.A., and Syunyaev, R.Z., Optimization of the Performance and Environmental Properties of Ethanol-Gasoline Fuels Using Microwave Treatment, Alternat. Energet. Ekol., 2007, vol. 52, no. 8, pp. 69–74.

    Google Scholar 

  3. Sanches, O.J. and Cardona, C.A., Trends in Biotechnological Production of Fuel Ethanol from Different Feedstocks, Bioresour. Technol., 2008, vol. 99, no. 13, pp. 5270–5295.

    Article  Google Scholar 

  4. Cardona, C.A. and Sanches, O.J., Fuel Ethanol Production: Process Design Trends and Integration Opportunities, Bioresour. Technol., 2007, vol. 98, no. 2, pp. 2415–2457.

    Article  CAS  Google Scholar 

  5. Wasewar, K.L. and Pangarkar, V.G., Intensification of Recovery of Ethanol from Fermentation Broth Using Pervaporation: Economical Evaluation, Chem. Biochem. Eng. Q., 2006, vol. 20, no. 2, pp. 135–145.

    CAS  Google Scholar 

  6. Blackburn, W.J. and Teague, J.M., Coordinating California’s Efforts to Promote Waste to Alcohol Production, Appl. Biochem. Biotechnol., 1998, vol. 70–72, pp. 821–841.

    Article  Google Scholar 

  7. Karpov, S.A., Current Aspects of Fuel Ethanol Production in Russia and Abroad, Chem. Technol. Fuels Oils, 2008, vol. 44, no. 1, pp. 1–4.

    Article  CAS  Google Scholar 

  8. www.abercade.ru/research/analysis/425.html, www.e-vid.ru/index-m-192-p-63-article-17596.htm

  9. Serafimov, L.A. and Frolkova, A.K., Fundamental Principle of Concentration-Field Redistribution between Separation Regions as a Basis for the Design of Technological Systems, Teor. Osn. Khim. Tekhnol., 1997, vol. 31, no. 2, pp. 193–201 [Theor. Found. Chem. Eng. (Engl. Transl.), vol. 31, no. 2, pp. 159–166].

    Google Scholar 

  10. Frolkova, A.K., Theoretical Foundations of Multicomponent Multiphase Separation Using Functional Complexes, Doctoral (Eng.) Dissertation, Moscow: Moscow Inst. of Fine Chemical Technology, 2000.

    Google Scholar 

  11. Polyakov, A.M., Some Aspects of the Pervaporation Separation of Liquid Mixtures, Krit. Tekhnol. Membr., 2004, vol. 24, no. 4, pp. 29–44.

    Google Scholar 

  12. Kujawski, W., Application of Pervaporation and Vapor Permeation in Environmental Protection, Pol. J. Environ. Stud., 2000, vol. 9, no. 1, pp. 13–26.

    CAS  Google Scholar 

  13. Wee, S.L., Tye, C.T., and Bhatia, S., Membrane Separation Process—Pervaporation through Zeolite Membrane, Sep. Purif. Technol., 2008, vol. 63, no. 3, pp. 500–516.

    Article  CAS  Google Scholar 

  14. Namboodiri, V.V. and Vane, L.M., High Permeability Membranes for the Dehydration of Low Water Content Ethanol by Pervaporation, J. Membr. Sci., 2007, vol. 306, nos. 1–2, pp. 209–215.

    Article  CAS  Google Scholar 

  15. Banat, F., Abu, Al-RabF., and Bani-Melhem, K., Desalination by Vacuum Membrane Distillation: Sensitivity Analysis, Sep. Purif. Technol., 2003, vol. 33, no. 1, pp. 75–87.

    Article  CAS  Google Scholar 

  16. Furukawa, S., Goda, K., Zhang, Yi., and Nitta, T., Molecular Simulation Study on Adsorption and Diffusion Behavior of Ethanol/Water Molecules in NaA Zeolite Crystal, J. Chem. Eng. Jpn., 2004, vol. 37, no. 1, pp. 67–74.

    Article  CAS  Google Scholar 

  17. Huang, H.J., Ramaswamy, S., Tschirner, W., and Ramarao, B.V., A Review of Separation Technologies in Current and Future Biorefineries, Sep. Purif. Technol., 2008, vol. 62, no. 1, pp. 1–21.

    Article  CAS  Google Scholar 

  18. Makarov, V.V. Petrykin, A.A., Skvortsov, E.A., et al., RF Patent 2?265?473, Byull. Izobret., 2005, no. 34.

  19. Lu, L., Shao, Q., and Huang, LuX., Simulation of Adsorption and Separation of Ethanol-Water Mixtures with Zeolite and Carbon Nanotube, Fluid Phase Equilib., 2007, vol. 261, nos. 1–2, pp. 191–198.

    Article  CAS  Google Scholar 

  20. Ladisch, M.R., Voloch, M., Hong, J., et al., Cornmeal Adsorber for Dehydrating Ethanol Vapors, Ind. Eng. Chem. Proc. Des. Dev., 1983, vol. 23, pp. 437–445.

    Article  Google Scholar 

  21. Simo, M., Brown, C.J., and Hlavacek, V., Simulation of Pressure Swing Adsorption in Fuel Ethanol Production Process, Comput. Chem. Eng., 2008, vol. 32, no. 7, pp. 1635–1649.

    Article  CAS  Google Scholar 

  22. Pucci, A., Phase Equilibria of Alkanol/Alkane Mixtures in New Oil and Gas Process Development, Pure Appl. Chem., 1989, vol. 61, no. 8, pp. 1363–1372.

    Article  CAS  Google Scholar 

  23. Offemanm, R.D., Stephenson, S.K., Franqui, P., and Cline, J.L., Extraction of Ethanol with Higher Alcohol Solvents and Their Toxicity to Yeast, Sep. Purif. Technol., 2008, vol. 63, no. 2, pp. 444–451.

    Article  Google Scholar 

  24. www.ethanolindia.net/molecular-sieves.html,vasatwiki.icrisat.org/index.php/Grain-alcohol#Purification

  25. Rodrigues, M.A., Almeida, J., Li, J., Matos, H.A., and De Azevendo, E.G., Efficiency of Water Removal from Water/Ethanol Mixtures Using Supercritical Carbon Dioxide, Braz. J. Chem. Eng., 2006, vol. 23, no. 2, pp. 205–212.

    Article  CAS  Google Scholar 

  26. Knez, Z., Skerget, M., Ilic, L., and Liitge, C., VaporLiquid Equilibrium of CO2-Organic Binary Solvent Systems (Ethanol, Tetrahydrofuran, ortho-Xylene, meta-Xylene, para-Xylene), J. Supercrit. Fluids, 2008, vol. 43, no. 3, pp. 383–389.

    Article  CAS  Google Scholar 

  27. Giivenc, A., Mehmetoglu, U., and Calimi, A., Supercritical Extraction of Ethanol, Turk. J. Chem., 1999, vol. 33, pp. 285–291.

    Google Scholar 

  28. Budich, M. and Brunner, G., Supercritical Fluid Extraction of Ethanol from Aqueous Solutions, J. Supercrit. Fluids, 2003, vol. 25, no. 1, pp. 45–55.

    Article  CAS  Google Scholar 

  29. Schacht, C., Zetzl, C., and Brunner, G., From Plant Materials to Ethanol by Means of Supercritical Fluid Technology, J. Supercrit. Fluids, 2008, vol. 46, no. 3, pp. 299–321.

    Article  CAS  Google Scholar 

  30. L’vov, S.V., Nekotorye voprosy rektifikatsii binarnykh i mnogokomponentnykh smesei (Topics in the Distillation of Binary and Multicomponent Mixtures), Moscow: Akad. Nauk SSSR, 1960.

    Google Scholar 

  31. Najmul Arifeen, Ruohang Wang Ioannis, Kookos, K., et al., Process Design and Optimization of Novel Wheat-Based Continuous Bioethanol Production System, Biotechnol. Prog., 2007, vol. 23, no. 6, pp. 1394–1403.

    Article  CAS  Google Scholar 

  32. www.chemsite.ru/abstract-25040.htm

  33. Serafimov, L.A., Separation of Azeotropic Mixtures, in Azeotropiya i poliazetropiya (Azeotropy and Polyzeotropy), Sventoslavskii, V.V., Ed., Moscow: Khimiya, 1968, ch. XXI, pp. 1394–1403.

    Google Scholar 

  34. Timofeev, V.S. and Serafimov, L.A., Printsipy tekhnologii osnovnogo organicheskogo i neftekhimicheskogo sinteza (Principles of Basic Organic and Petrochemical Synthesis Technology), Moscow: Vysshaya Shkola, 2003.

    Google Scholar 

  35. Kogan, V.B., Azeotropnaya i ekstraktivnaya rektifikatsiya (Azeotropic and Extractive Distillation), Leningrad: Khimiya, 1971.

    Google Scholar 

  36. Serafimov, L.A., Frolkova, A.K., and Bushina, D.I., Extractive Distillation of Binary Azeotropic Mixtures, Teor. Osn. Khim. Tekhnol., 2008, vol. 42, no. 5, pp. 521–530 [Theor. Found. Chem. Eng. (Engl. Transl.), vol. 42, no. 5, pp. 507–516].

    Google Scholar 

  37. Brito, R.R., Maciel, M.R.W., and Meirelles, A.A., New Extractive Distillation Configuration for Separating Binary Azeotropic Mixtures, The First European Congress on Chemical Engineering, Florence, Italy, 1997, vol. 2, pp. 1333–1336.

    Google Scholar 

  38. Hua Chao, Li Xingang, Xu Shimin, and Bai Peng, Design and Operation of Batch Extractive Distillation with Two Reboilers, Chin. J. Chem. Eng., 2007, vol. 15, no. 2, pp. 286–290.

    Article  CAS  Google Scholar 

  39. Kotai, B., Lang, P., and Modla, G., Batch Extractive Distillation As Hybrid Process: Separation of Minimum Boiling Azeotropes, Chem. Eng. Sci., 2007, vol. 2.

  40. Anokhina, E., Grigorieva, A., and Timoshenko, A., Ethanol Dehydration in the Complex Column with Refining Side Section, Proc. 35th Int. Conf. of Slovak Society of Chemical Engineering, Tatranske Matliare, Slovakia, 2008, p. 171.

  41. Seiler, M., Kohler, D., and Arlt, W., Hyperbranched Polymers: New Selective Solvents for Extractive Distillation and Solvent Extraction, Sep. Purif. Technol., 2003, vol. 30, no. 2, pp. 179–197.

    Article  CAS  Google Scholar 

  42. Zhao Jin, Dong Cong-Cong, Li Chun-Xi, et al., Isobaric Vapor-Liquid Equilibria for Ethanol-Water System Containing Different Ionic Liquids at Atmospheric Pressure, Fluid Phase Equilib., 2006, vol. 242, no. 2, pp. 147–153.

    Article  CAS  Google Scholar 

  43. Jiang Xiao-Chuan, Wang Jun-Feng, Li Chun-Xi, et al., Vapor Pressure Measurement for Binary and Ternary Systems Containing Methanol, Ethanol and Ionic Liquid 1-Ethyl-3-Ethylimidazolium Diethylphosphate, J. Chem. Thermodyn., 2007, vol. 39, no. 6, pp. 841–846.

    Article  CAS  Google Scholar 

  44. Calvar, N., Gonzalez, B., Gomez, E., and Dominguez, A., Study of the Behaviour of the Azeotropic Mixture Ethanol-Water with Imidazolium-Based Ionic Liquids, Fluid Phase Equilib., 2007, vol. 259, no. 1, pp. 51–56.

    Article  CAS  Google Scholar 

  45. Wang Jun-Feng, Li Chun-Xi, Wang Zi-Hao, et al., Vapor Pressure Measurement for Water, Methanol, Ethanol, and Their Binary Mixtures in the Presence of an Ionic Liquid 1-Ethyl-3-Methylimidazolium Dimethylphosphate, Fluid Phase Equilib., 2007, vol. 255, no. 2, pp. 186–192.

    Article  CAS  Google Scholar 

  46. Jin Zhao, Xiao-Chuan Jiang, Chun-Xi Li, and Zi-Hao Wang, Vapor Pressure Measurement for Binary and Ternary Systems Containing a Phosphoric Ionic Liquid, Fluid Phase Equilib., 2006, vol. 247, nos. 1–2, pp. 190–198.

    Google Scholar 

  47. Ge Yun, Zhang Lianzhong, Yuan Xingcai, et al., Selection of Ionic Liquids as Entrainers for Separation of (Water + Ethanol), J. Chem. Thermodyn., 2008, vol. 40, no. 8, pp. 1248–1252.

    Article  CAS  Google Scholar 

  48. Jun-Feng Wang, Chun-Xi Li, and Zi-Hao Wang, Measurement and Prediction of Vapor Pressure of Binary and Ternary Systems Containing 1-Ethyl-3-Methylimidazolium Ethyl Sulfate, J. Chem. Eng. Data, 2007, vol. 52, no. 4, pp. 1307–1312.

    Article  Google Scholar 

  49. Calvar, N., Gonzalez, B., Gomez, E., and Dominguez, A., Vapor-Liquid Equilibria for Ternary System Ethanol + Water + 1-Ethyl-3-Methylimidazolium Ethyl Sulfate and Corresponding Binary Systems Containing the Ionic Liquids at 101.3 kPa, J. Chem. Eng. Data, 2008, vol. 53, no. 3, pp. 820–825.

    Article  CAS  Google Scholar 

  50. Simoni, L.D., Lin, Y., Brennecke, J.F., and Stadtherr, M.A., Modeling Liquid-Liquid Equilibrium of Ionic Liquid Systems with NRTL, Electrolyte-NRTL, and UNIQUAC, Ind. Eng. Chem. Res., 2008, vol. 47, no. 1, pp. 256–272.

    Article  CAS  Google Scholar 

  51. Torres, J.L., Grenhlein, H.E., and Lynd, L.R., Computer Simulation of the Dartmouth Process for Separation of Dilute Ethanol/Water Mixtures, Appl. Biochem. Biotechnol., 1989, vol. 20/21, pp. 621–633.

    Article  Google Scholar 

  52. Pinto, R.T.P., Wolf-Maciel, M.R., and Lintome, L., Saline Extractive Distillation Process for Ethanol Purification, Comput. Chem. Eng., 2000, vol. 24, no. 2, pp. 1689–1694.

    Article  CAS  Google Scholar 

  53. Ligero, E.L. and Ravagnani, T.M.K., Simulation of Salt Extractive Distillation with Spray Dryer Salt Recovery for Anhydrous Ethanol Production, J. Chem. Eng. Jpn., 2002, vol. 35, no. 6, pp. 557–563.

    Article  CAS  Google Scholar 

  54. Llano-Restrepo, M. and Aguilar-Arias, J., Modeling and Simulation of Saline Extractive Distillation Columns for the Production of Absolute Ethanol, Comput. Chem. Eng., 2003, vol. 27, no. 4, pp. 527–549.

    Article  CAS  Google Scholar 

  55. Ligero, E.L. and Ravagnani, T.M.K., Dehydration of Ethanol with Salt Extractive Distillation—A Comparative Analysis between Processes with Salt Recovery, Chem. Eng. Process., 2003, vol. 42, no. 7, pp. 543–552.

    Article  CAS  Google Scholar 

  56. Zhigang Lei, Hongyou Wang, Rongqi Zhou, and Zhanting Duan, Influence of Salt Added to Solvent on Extractive Distillation, Chem. Eng. J., 2002, vol. 87, no. 2, pp. 149–156.

    Article  Google Scholar 

  57. Gil, I.D., Uyazan, A.M., Aguilar, J.L., et al., Separation of Ethanol and Water by Extractive Distillation with Salt and Solvent As Entrainer: Process Simulation, Braz. J. Chem. Eng., 2008, vol. 25, no. 1, pp. 207–215.

    Article  CAS  Google Scholar 

  58. Hilmen, E.-K., Separation of Azeotropic Mixtures: Tools for Analysis and Studies on Batch Distillation Operation, Thesis Submitted for the Degree of Dr. Eng., Norwegian University of Science and Technology, Department of Chemical Engineering, 2001.

  59. Vasconcelos, C.J.G. and Wolf-Maciel, M.R., Dynamic and Control of High Purity Heterogeneous Azeotropic Distillation Process, Comput. Aided Chem. Eng., 2000, vol. 8, pp. 217–222.

    Article  CAS  Google Scholar 

  60. Zielinski, L., Bioethanol Dehydration in Pressure Swing Adsorption Proces, www.msuil.ru/unesco.forum.doc1/17doc

  61. Koczka, K., Mizsey, P., and Fonyo, Z., Rigorous Modelling and Optimization of Hybrid Separation Processes Based on Pervaporation, Central Eur. J. Chem., 2007, vol. 5, no. 4, pp. 1124–1147.

    Article  CAS  Google Scholar 

  62. Kafarov, V.V., Gordeev, L.S., and Glebov, M.B., Separation of Azeotropic Mixtures in Membrane-Rectification Processes, Teor. Osn. Khim. Tekhnol., 1996, vol. 30, no. 2, pp. 180–187 [Theor. Found. Chem. Eng. (Engl. Transl.), vol. 30, no. 2, pp. 160–167].

    CAS  Google Scholar 

  63. Olujic, Z., Perez, P., De Bruijn, F.T., et al., Augmenting Distillation by Membranes: Developments and Prospects, Chem. Biochem. Eng. Q, 2006, vol. 20, no. 3, pp. 301–318.

    Google Scholar 

  64. Szitkai, Z., Lelkes, Z., Rev, E., and Fonyo, Z., Optimization of Hybrid Ethanol Dehydration Systems, Chem. Eng. Process., 2002, vol. 41, no. 7, pp. 631–646.

    Article  CAS  Google Scholar 

  65. Del Pozo Gomez, M.T., Klein, A., Repke, J.-U., and Wozny, G., A New Energy-Integrated Pervaporation Distillation Approach, Desalination, 2008, vol. 224, nos. 1–3, pp. 28–33.

    Google Scholar 

  66. Bologa, M.K. and Maksimuk, E.P., Recovery of Process Liquids in an Electric Field, Int. Conf. Fizikar 2005, Baku, 2005, no. 114, p. 430.

  67. Banat Fawzi, A., Abu Al-Rub Fahmi, A., and Simandl Jana, Analysis of Vapor-Liquid Equilibrium of Ethanol-Water System via Headspace Gas Chromatography: Effect of Molecular Sieves, Sep. Purif. Technol., 2000, vol. 18, no. 2, pp. 111–118.

    Article  Google Scholar 

  68. Ohashi, R., Kamoshita, Y., Kishimoto, M., and Suzuki, T., Continuous Production and Separation of Ethanol without Effluence of Waste-Water Using a Distiller Integrated SCM-Reactor System, J. Ferment. Bioeng., 1998, vol. 86, no. 2, pp. 220–225.

    Article  CAS  Google Scholar 

  69. Kaseno, A., Miyazawa, I., and Kokugan, T., Effect of Product Removal by a Pervaporation on Ethanol Fermentation, J. Ferment. Bioeng., 1998, vol. 86, no. 5, pp. 488–493.

    Article  CAS  Google Scholar 

  70. Calibo, R.L., Matsumura, M., and Kataoka, H., Continuous Ethanol Fermentation of Concentrated Sugar Solutions Coupled with Membrane Distillation Using a PTFE Module, J. Ferment. Bioeng., 1989, vol. 67, no. 1, pp. 40–45.

    Article  CAS  Google Scholar 

  71. Kargupta, K., Datta, S., and Sanyal, S.K., Analysis of the Performance of a Continuous Membrane Bioreactor with Cell Recycling during Ethanol Fermentation, Biochem. Eng. J., 1998, vol. 1, no. 1, pp. 31–37.

    Article  CAS  Google Scholar 

  72. Ghosh, K. and Ramachandran, K.B., Analysis of the Effect of In Situ Product Removal on the Stability and Performance of a Continuous Bioreactor with Cell Separator for Ethanol Production, Chem. Biochem. Eng. Q., 2007, vol. 21, no. 3, pp. 285–296.

    CAS  Google Scholar 

  73. Moura, A.G. and Medeiros, J.R., Applying Consistent Technology for Fuel Ethanol Production, Sugar Technol., 2008, vol. 10, no. 1, pp. 20–24.

    Article  CAS  Google Scholar 

  74. Van Hoof, V., Abeele, L., Buekenhoudt, A., et al., Economic Comparison between Azeotropic Distillation and Hybrid Systems Combining Distillation with Pervaporation for the Dehydration of Isopropanol, Sep. Purif. Technol., 2004, vol. 37, no. 1, pp. 33–49.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Frolkova.

Additional information

Original Russian Text © A.K. Frolkova, V.M. Raeva, 2009, published in Khimicheskaya Tekhnologiya, 2009, Vol. 10, No. 8, pp. 469–482.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frolkova, A.K., Raeva, V.M. Bioethanol dehydration: State of the art. Theor Found Chem Eng 44, 545–556 (2010). https://doi.org/10.1134/S0040579510040342

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579510040342

Key words

Navigation